File: framefilter.cpp

package info (click to toggle)
x265 4.1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 15,408 kB
  • sloc: asm: 187,063; cpp: 118,996; ansic: 741; makefile: 146; sh: 91; python: 11
file content (850 lines) | stat: -rw-r--r-- 33,812 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
/*****************************************************************************
 * Copyright (C) 2013-2020 MulticoreWare, Inc
 *
 * Authors: Chung Shin Yee <shinyee@multicorewareinc.com>
 *          Min Chen <chenm003@163.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02111, USA.
 *
 * This program is also available under a commercial proprietary license.
 * For more information, contact us at license @ x265.com.
 *****************************************************************************/

#include "common.h"
#include "frame.h"
#include "framedata.h"
#include "encoder.h"
#include "framefilter.h"
#include "frameencoder.h"
#include "wavefront.h"

using namespace X265_NS;

static float calculateSSIM(pixel *pix1, intptr_t stride1, pixel *pix2, intptr_t stride2, uint32_t width, uint32_t height, void *buf, uint32_t& cnt);

namespace X265_NS
{
    static void integral_init4h_c(uint32_t *sum, pixel *pix, intptr_t stride)
    {
        int32_t v = pix[0] + pix[1] + pix[2] + pix[3];
        for (int16_t x = 0; x < stride - 4; x++)
        {
            sum[x] = v + sum[x - stride];
            v += pix[x + 4] - pix[x];
        }
    }

    static void integral_init8h_c(uint32_t *sum, pixel *pix, intptr_t stride)
    {
        int32_t v = pix[0] + pix[1] + pix[2] + pix[3] + pix[4] + pix[5] + pix[6] + pix[7];
        for (int16_t x = 0; x < stride - 8; x++)
        {
            sum[x] = v + sum[x - stride];
            v += pix[x + 8] - pix[x];
        }
    }

    static void integral_init12h_c(uint32_t *sum, pixel *pix, intptr_t stride)
    {
        int32_t v = pix[0] + pix[1] + pix[2] + pix[3] + pix[4] + pix[5] + pix[6] + pix[7] +
            pix[8] + pix[9] + pix[10] + pix[11];
        for (int16_t x = 0; x < stride - 12; x++)
        {
            sum[x] = v + sum[x - stride];
            v += pix[x + 12] - pix[x];
        }
    }

    static void integral_init16h_c(uint32_t *sum, pixel *pix, intptr_t stride)
    {
        int32_t v = pix[0] + pix[1] + pix[2] + pix[3] + pix[4] + pix[5] + pix[6] + pix[7] +
            pix[8] + pix[9] + pix[10] + pix[11] + pix[12] + pix[13] + pix[14] + pix[15];
        for (int16_t x = 0; x < stride - 16; x++)
        {
            sum[x] = v + sum[x - stride];
            v += pix[x + 16] - pix[x];
        }
    }

    static void integral_init24h_c(uint32_t *sum, pixel *pix, intptr_t stride)
    {
        int32_t v = pix[0] + pix[1] + pix[2] + pix[3] + pix[4] + pix[5] + pix[6] + pix[7] +
            pix[8] + pix[9] + pix[10] + pix[11] + pix[12] + pix[13] + pix[14] + pix[15] +
            pix[16] + pix[17] + pix[18] + pix[19] + pix[20] + pix[21] + pix[22] + pix[23];
        for (int16_t x = 0; x < stride - 24; x++)
        {
            sum[x] = v + sum[x - stride];
            v += pix[x + 24] - pix[x];
        }
    }

    static void integral_init32h_c(uint32_t *sum, pixel *pix, intptr_t stride)
    {
        int32_t v = pix[0] + pix[1] + pix[2] + pix[3] + pix[4] + pix[5] + pix[6] + pix[7] +
            pix[8] + pix[9] + pix[10] + pix[11] + pix[12] + pix[13] + pix[14] + pix[15] +
            pix[16] + pix[17] + pix[18] + pix[19] + pix[20] + pix[21] + pix[22] + pix[23] +
            pix[24] + pix[25] + pix[26] + pix[27] + pix[28] + pix[29] + pix[30] + pix[31];
        for (int16_t x = 0; x < stride - 32; x++)
        {
            sum[x] = v + sum[x - stride];
            v += pix[x + 32] - pix[x];
        }
    }

    static void integral_init4v_c(uint32_t *sum4, intptr_t stride)
    {
        for (int x = 0; x < stride; x++)
            sum4[x] = sum4[x + 4 * stride] - sum4[x];
    }

    static void integral_init8v_c(uint32_t *sum8, intptr_t stride)
    {
        for (int x = 0; x < stride; x++)
            sum8[x] = sum8[x + 8 * stride] - sum8[x];
    }

    static void integral_init12v_c(uint32_t *sum12, intptr_t stride)
    {
        for (int x = 0; x < stride; x++)
            sum12[x] = sum12[x + 12 * stride] - sum12[x];
    }

    static void integral_init16v_c(uint32_t *sum16, intptr_t stride)
    {
        for (int x = 0; x < stride; x++)
            sum16[x] = sum16[x + 16 * stride] - sum16[x];
    }

    static void integral_init24v_c(uint32_t *sum24, intptr_t stride)
    {
        for (int x = 0; x < stride; x++)
            sum24[x] = sum24[x + 24 * stride] - sum24[x];
    }

    static void integral_init32v_c(uint32_t *sum32, intptr_t stride)
    {
        for (int x = 0; x < stride; x++)
            sum32[x] = sum32[x + 32 * stride] - sum32[x];
    }

    void setupSeaIntegralPrimitives_c(EncoderPrimitives &p)
    {
        p.integral_initv[INTEGRAL_4] = integral_init4v_c;
        p.integral_initv[INTEGRAL_8] = integral_init8v_c;
        p.integral_initv[INTEGRAL_12] = integral_init12v_c;
        p.integral_initv[INTEGRAL_16] = integral_init16v_c;
        p.integral_initv[INTEGRAL_24] = integral_init24v_c;
        p.integral_initv[INTEGRAL_32] = integral_init32v_c;
        p.integral_inith[INTEGRAL_4] = integral_init4h_c;
        p.integral_inith[INTEGRAL_8] = integral_init8h_c;
        p.integral_inith[INTEGRAL_12] = integral_init12h_c;
        p.integral_inith[INTEGRAL_16] = integral_init16h_c;
        p.integral_inith[INTEGRAL_24] = integral_init24h_c;
        p.integral_inith[INTEGRAL_32] = integral_init32h_c;
    }
}

void FrameFilter::destroy()
{
    X265_FREE(m_ssimBuf);

    if (m_parallelFilter)
    {
        // NOTE: don't check m_useSao because it is dynamic controllable
        for(int row = 0; row < m_numRows; row++)
            m_parallelFilter[row].m_sao.destroy((row == 0 ? 1 : 0));
        delete[] m_parallelFilter;
        m_parallelFilter = NULL;
    }
}

void FrameFilter::init(Encoder *top, FrameEncoder *frame, int numRows, uint32_t numCols)
{
    m_param = frame->m_param;
    m_frameEncoder = frame;
    m_useSao = 1;
    m_numRows = numRows;
    m_numCols = numCols;
    m_hChromaShift = CHROMA_H_SHIFT(m_param->internalCsp);
    m_vChromaShift = CHROMA_V_SHIFT(m_param->internalCsp);
    m_pad[0] = top->m_sps.conformanceWindow.rightOffset;
    m_pad[1] = top->m_sps.conformanceWindow.bottomOffset;
    m_saoRowDelay = m_param->bEnableLoopFilter ? 1 : 0;
    m_lastHeight = (m_param->sourceHeight % m_param->maxCUSize) ? (m_param->sourceHeight % m_param->maxCUSize) : m_param->maxCUSize;
    m_lastWidth = (m_param->sourceWidth % m_param->maxCUSize) ? (m_param->sourceWidth % m_param->maxCUSize) : m_param->maxCUSize;
    integralCompleted.set(0);

    if (m_param->bEnableSsim)
        m_ssimBuf = X265_MALLOC(int, 8 * (m_param->sourceWidth / 4 + 3));

    m_parallelFilter = new ParallelFilter[numRows];

    if (m_parallelFilter)
    {
        if (m_useSao)
        {
            for(int row = 0; row < numRows; row++)
            {
                if (!m_parallelFilter[row].m_sao.create(m_param, (row == 0 ? 1 : 0)))
                    m_useSao = 0;
                else
                {
                    if (row != 0)
                        m_parallelFilter[row].m_sao.createFromRootNode(&m_parallelFilter[0].m_sao);
                }

            }
        }

        for(int row = 0; row < numRows; row++)
        {
            // Setting maximum bound information
            m_parallelFilter[row].m_rowHeight = (row == numRows - 1) ? m_lastHeight : m_param->maxCUSize;
            m_parallelFilter[row].m_row = row;
            m_parallelFilter[row].m_rowAddr = row * numCols;
            m_parallelFilter[row].m_frameFilter = this;

            if (row > 0)
                m_parallelFilter[row].m_prevRow = &m_parallelFilter[row - 1];
        }
    }

}

void FrameFilter::start(Frame *frame, Entropy& initState)
{
    m_frame = frame;

    // Reset Filter Data Struct
    if (m_parallelFilter)
    {
        for(int row = 0; row < m_numRows; row++)
        {
            if (m_useSao)
                m_parallelFilter[row].m_sao.startSlice(frame, initState);

            m_parallelFilter[row].m_lastCol.set(0);
            m_parallelFilter[row].m_allowedCol.set(0);
            m_parallelFilter[row].m_lastDeblocked.set(-1);
            m_parallelFilter[row].m_encData = frame->m_encData;
        }

        // Reset SAO common statistics
        if (m_useSao)
            m_parallelFilter[0].m_sao.resetStats();
    }
}

/* restore original YUV samples to recon after SAO (if lossless) */
static void restoreOrigLosslessYuv(const CUData* cu, Frame& frame, uint32_t absPartIdx)
{
    const int size = cu->m_log2CUSize[absPartIdx] - 2;
    const uint32_t cuAddr = cu->m_cuAddr;

    PicYuv* reconPic = frame.m_reconPic[0];
    PicYuv* fencPic  = frame.m_fencPic;

    pixel* dst = reconPic->getLumaAddr(cuAddr, absPartIdx);
    pixel* src = fencPic->getLumaAddr(cuAddr, absPartIdx);

    primitives.cu[size].copy_pp(dst, reconPic->m_stride, src, fencPic->m_stride);

    if (cu->m_chromaFormat != X265_CSP_I400)
    {
        pixel* dstCb = reconPic->getCbAddr(cuAddr, absPartIdx);
        pixel* srcCb = fencPic->getCbAddr(cuAddr, absPartIdx);
        pixel* dstCr = reconPic->getCrAddr(cuAddr, absPartIdx);
        pixel* srcCr = fencPic->getCrAddr(cuAddr, absPartIdx);

        const int csp = fencPic->m_picCsp;
        primitives.chroma[csp].cu[size].copy_pp(dstCb, reconPic->m_strideC, srcCb, fencPic->m_strideC);
        primitives.chroma[csp].cu[size].copy_pp(dstCr, reconPic->m_strideC, srcCr, fencPic->m_strideC);
    }
}

/* Original YUV restoration for CU in lossless coding */
static void origCUSampleRestoration(const CUData* cu, const CUGeom& cuGeom, Frame& frame)
{
    uint32_t absPartIdx = cuGeom.absPartIdx;
    if (cu->m_cuDepth[absPartIdx] > cuGeom.depth)
    {
        for (int subPartIdx = 0; subPartIdx < 4; subPartIdx++)
        {
            const CUGeom& childGeom = *(&cuGeom + cuGeom.childOffset + subPartIdx);
            if (childGeom.flags & CUGeom::PRESENT)
                origCUSampleRestoration(cu, childGeom, frame);
        }
        return;
    }

    // restore original YUV samples
    if (cu->m_tqBypass[absPartIdx])
        restoreOrigLosslessYuv(cu, frame, absPartIdx);
}

void FrameFilter::ParallelFilter::copySaoAboveRef(const CUData *ctu, PicYuv* reconPic, uint32_t cuAddr, int col)
{
    // Copy SAO Top Reference Pixels
    int ctuWidth  = ctu->m_encData->m_param->maxCUSize;
    const pixel* recY = reconPic->getPlaneAddr(0, cuAddr) - (ctu->m_bFirstRowInSlice ? 0 : reconPic->m_stride);

    // Luma
    memcpy(&m_sao.m_tmpU[0][col * ctuWidth], recY, ctuWidth * sizeof(pixel));
    X265_CHECK(col * ctuWidth + ctuWidth <= m_sao.m_numCuInWidth * ctuWidth, "m_tmpU buffer beyond bound write detected");

    // Chroma
    if (m_frameFilter->m_param->internalCsp != X265_CSP_I400)
    {
        ctuWidth  >>= m_sao.m_hChromaShift;

        const pixel* recU = reconPic->getPlaneAddr(1, cuAddr) - (ctu->m_bFirstRowInSlice ? 0 : reconPic->m_strideC);
        const pixel* recV = reconPic->getPlaneAddr(2, cuAddr) - (ctu->m_bFirstRowInSlice ? 0 : reconPic->m_strideC);
        memcpy(&m_sao.m_tmpU[1][col * ctuWidth], recU, ctuWidth * sizeof(pixel));
        memcpy(&m_sao.m_tmpU[2][col * ctuWidth], recV, ctuWidth * sizeof(pixel));

        X265_CHECK(col * ctuWidth + ctuWidth <= m_sao.m_numCuInWidth * ctuWidth, "m_tmpU buffer beyond bound write detected");
    }
}

void FrameFilter::ParallelFilter::processSaoCTU(SAOParam *saoParam, int col)
{
    // TODO: apply SAO on CU and copy back soon, is it necessary?
    if (saoParam->bSaoFlag[0])
        m_sao.generateLumaOffsets(saoParam->ctuParam[0], m_row, col);

    if (saoParam->bSaoFlag[1])
        m_sao.generateChromaOffsets(saoParam->ctuParam, m_row, col);

    if (m_encData->m_slice->m_pps->bTransquantBypassEnabled)
    {
        const CUGeom* cuGeoms = m_frameFilter->m_frameEncoder->m_cuGeoms;
        const uint32_t* ctuGeomMap = m_frameFilter->m_frameEncoder->m_ctuGeomMap;

        uint32_t cuAddr = m_rowAddr + col;
        const CUData* ctu = m_encData->getPicCTU(cuAddr);
        assert(m_frameFilter->m_frame->m_reconPic[0] == m_encData->m_reconPic[0]);
        origCUSampleRestoration(ctu, cuGeoms[ctuGeomMap[cuAddr]], *m_frameFilter->m_frame);
    }
}

// NOTE: MUST BE delay a row when Deblock enabled, the Deblock will modify above pixels in Horizon pass
void FrameFilter::ParallelFilter::processPostCu(int col) const
{
    // Update finished CU cursor
    m_frameFilter->m_frame->m_reconColCount[m_row].set(col);

    // shortcut path for non-border area
    if ((col != 0) & (col != m_frameFilter->m_numCols - 1) & (m_row != 0) & (m_row != m_frameFilter->m_numRows - 1))
        return;

    PicYuv *reconPic = m_frameFilter->m_frame->m_reconPic[0];
    const uint32_t lineStartCUAddr = m_rowAddr + col;
    const int realH = getCUHeight();
    const int realW = m_frameFilter->getCUWidth(col);

    const uint32_t lumaMarginX = reconPic->m_lumaMarginX;
    const uint32_t lumaMarginY = reconPic->m_lumaMarginY;
    const uint32_t chromaMarginX = reconPic->m_chromaMarginX;
    const uint32_t chromaMarginY = reconPic->m_chromaMarginY;
    const int hChromaShift = reconPic->m_hChromaShift;
    const int vChromaShift = reconPic->m_vChromaShift;
    const intptr_t stride = reconPic->m_stride;
    const intptr_t strideC = reconPic->m_strideC;
    pixel *pixY = reconPic->getLumaAddr(lineStartCUAddr);
    // // MUST BE check I400 since m_picOrg uninitialize in that case
    pixel *pixU = (m_frameFilter->m_param->internalCsp != X265_CSP_I400) ? reconPic->getCbAddr(lineStartCUAddr) : NULL;
    pixel *pixV = (m_frameFilter->m_param->internalCsp != X265_CSP_I400) ? reconPic->getCrAddr(lineStartCUAddr) : NULL;
    int copySizeY = realW;
    int copySizeC = (realW >> hChromaShift);

    if ((col == 0) | (col == m_frameFilter->m_numCols - 1))
    {
        // TODO: improve by process on Left or Right only
        primitives.extendRowBorder(reconPic->getLumaAddr(m_rowAddr), stride, reconPic->m_picWidth, realH, reconPic->m_lumaMarginX);

        if (m_frameFilter->m_param->internalCsp != X265_CSP_I400)
        {
            primitives.extendRowBorder(reconPic->getCbAddr(m_rowAddr), strideC, reconPic->m_picWidth >> hChromaShift, realH >> vChromaShift, reconPic->m_chromaMarginX);
            primitives.extendRowBorder(reconPic->getCrAddr(m_rowAddr), strideC, reconPic->m_picWidth >> hChromaShift, realH >> vChromaShift, reconPic->m_chromaMarginX);
        }
    }

    // Extra Left and Right border on first and last CU
    if ((col == 0) | (col == m_frameFilter->m_numCols - 1))
    {
        copySizeY += lumaMarginX;
        copySizeC += chromaMarginX;
    }

    // First column need extension left padding area and first CU
    if (col == 0)
    {
        pixY -= lumaMarginX;
        pixU -= chromaMarginX;
        pixV -= chromaMarginX;
    }

    // Border extend Top
    if (m_row == 0)
    {
        for (uint32_t y = 0; y < lumaMarginY; y++)
            memcpy(pixY - (y + 1) * stride, pixY, copySizeY * sizeof(pixel));

        if (m_frameFilter->m_param->internalCsp != X265_CSP_I400)
        {
            for (uint32_t y = 0; y < chromaMarginY; y++)
            {
                memcpy(pixU - (y + 1) * strideC, pixU, copySizeC * sizeof(pixel));
                memcpy(pixV - (y + 1) * strideC, pixV, copySizeC * sizeof(pixel));
            }
        }
    }

    // Border extend Bottom
    if (m_row == m_frameFilter->m_numRows - 1)
    {
        pixY += (realH - 1) * stride;
        pixU += ((realH >> vChromaShift) - 1) * strideC;
        pixV += ((realH >> vChromaShift) - 1) * strideC;
        for (uint32_t y = 0; y < lumaMarginY; y++)
            memcpy(pixY + (y + 1) * stride, pixY, copySizeY * sizeof(pixel));

        if (m_frameFilter->m_param->internalCsp != X265_CSP_I400)
        {
            for (uint32_t y = 0; y < chromaMarginY; y++)
            {
                memcpy(pixU + (y + 1) * strideC, pixU, copySizeC * sizeof(pixel));
                memcpy(pixV + (y + 1) * strideC, pixV, copySizeC * sizeof(pixel));
            }
        }
    }
}

// NOTE: Single Threading only
void FrameFilter::ParallelFilter::processTasks(int /*workerThreadId*/)
{
    SAOParam* saoParam = m_encData->m_saoParam;
    const CUGeom* cuGeoms = m_frameFilter->m_frameEncoder->m_cuGeoms;
    const uint32_t* ctuGeomMap = m_frameFilter->m_frameEncoder->m_ctuGeomMap;
    PicYuv* reconPic = m_encData->m_reconPic[0];
    const int colStart = m_lastCol.get();
    const int numCols = m_frameFilter->m_numCols;
    // TODO: Waiting previous row finish or simple clip on it?
    int colEnd = m_allowedCol.get();

    // Avoid threading conflict
    if (!m_encData->getPicCTU(m_rowAddr)->m_bFirstRowInSlice && colEnd > m_prevRow->m_lastDeblocked.get())
        colEnd = m_prevRow->m_lastDeblocked.get();

    if (colStart >= colEnd)
        return;

    for (uint32_t col = (uint32_t)colStart; col < (uint32_t)colEnd; col++)
    {
        const uint32_t cuAddr = m_rowAddr + col;
        const CUData* ctu = m_encData->getPicCTU(cuAddr);

        if (m_frameFilter->m_param->bEnableLoopFilter)
        {
            deblockCTU(ctu, cuGeoms[ctuGeomMap[cuAddr]], Deblock::EDGE_VER);
        }

        if (col >= 1)
        {
            const CUData* ctuPrev = m_encData->getPicCTU(cuAddr - 1);
            if (m_frameFilter->m_param->bEnableLoopFilter)
            {
                deblockCTU(ctuPrev, cuGeoms[ctuGeomMap[cuAddr - 1]], Deblock::EDGE_HOR);

                // When SAO Disable, setting column counter here
                if (!m_frameFilter->m_useSao & !ctuPrev->m_bFirstRowInSlice)
                    m_prevRow->processPostCu(col - 1);
            }

            if (m_frameFilter->m_useSao)
            {
                // Save SAO bottom row reference pixels
                copySaoAboveRef(ctuPrev, reconPic, cuAddr - 1, col - 1);

                // SAO Decide
                if (col >= 2)
                {
                    // NOTE: Delay 2 column to avoid mistake on below case, it is Deblock sync logic issue, less probability but still alive
                    //       ... H V |
                    //       ..S H V |
                    m_sao.rdoSaoUnitCu(saoParam, (ctu->m_bFirstRowInSlice ? 0 : m_rowAddr), col - 2, cuAddr - 2);
                }

                // Process Previous Row SAO CU
                if (!ctu->m_bFirstRowInSlice && col >= 3)
                {
                    // Must delay 1 row to avoid thread data race conflict
                    m_prevRow->processSaoCTU(saoParam, col - 3);
                    m_prevRow->processPostCu(col - 3);
                }
            }

            m_lastDeblocked.set(col);
        }
        m_lastCol.incr();
    }

    if (colEnd == numCols)
    {
        const uint32_t cuAddr = m_rowAddr + numCols - 1;
        const CUData* ctuPrev = m_encData->getPicCTU(cuAddr);

        if (m_frameFilter->m_param->bEnableLoopFilter)
        {
            deblockCTU(ctuPrev, cuGeoms[ctuGeomMap[cuAddr]], Deblock::EDGE_HOR);

            // When SAO Disable, setting column counter here
            if (!m_frameFilter->m_useSao & !ctuPrev->m_bFirstRowInSlice)
                m_prevRow->processPostCu(numCols - 1);
        }

        // TODO: move processPostCu() into processSaoUnitCu()
        if (m_frameFilter->m_useSao)
        {
            const CUData* ctu = m_encData->getPicCTU(m_rowAddr + numCols - 2);

            // Save SAO bottom row reference pixels
            copySaoAboveRef(ctuPrev, reconPic, cuAddr, numCols - 1);

            // SAO Decide
            // NOTE: reduce condition check for 1 CU only video, Why someone play with it?
            if (numCols >= 2)
                m_sao.rdoSaoUnitCu(saoParam, (ctu->m_bFirstRowInSlice ? 0 : m_rowAddr), numCols - 2, cuAddr - 1);

            if (numCols >= 1)
                m_sao.rdoSaoUnitCu(saoParam, (ctuPrev->m_bFirstRowInSlice ? 0 : m_rowAddr), numCols - 1, cuAddr);

            // Process Previous Rows SAO CU
            if (!ctuPrev->m_bFirstRowInSlice & (numCols >= 3))
            {
                m_prevRow->processSaoCTU(saoParam, numCols - 3);
                m_prevRow->processPostCu(numCols - 3);
            }

            if (!ctuPrev->m_bFirstRowInSlice & (numCols >= 2))
            {
                m_prevRow->processSaoCTU(saoParam, numCols - 2);
                m_prevRow->processPostCu(numCols - 2);
            }

            if (!ctuPrev->m_bFirstRowInSlice & (numCols >= 1))
            {
                m_prevRow->processSaoCTU(saoParam, numCols - 1);
                m_prevRow->processPostCu(numCols - 1);
            }

            // Setting column sync counter
            if (!ctuPrev->m_bFirstRowInSlice)
                m_frameFilter->m_frame->m_reconColCount[m_row - 1].set(numCols - 1);
        }
        m_lastDeblocked.set(numCols);
    }
}

void FrameFilter::processRow(int row, int layer)
{
    ProfileScopeEvent(filterCTURow);

#if DETAILED_CU_STATS
    ScopedElapsedTime filterPerfScope(m_frameEncoder->m_cuStats.loopFilterElapsedTime);
    m_frameEncoder->m_cuStats.countLoopFilter++;
#endif

    if (!m_param->bEnableLoopFilter && !m_useSao)
    {
        processPostRow(row, layer);
        return;
    }
    FrameData& encData = *m_frame->m_encData;

    // SAO: was integrate into encode loop
    SAOParam* saoParam = encData.m_saoParam;
    CUData* ctu = encData.getPicCTU(m_parallelFilter[row].m_rowAddr);

    /* Processing left block Deblock with current threading */
    {        
        /* Check to avoid previous row process slower than current row */
        X265_CHECK(ctu->m_bFirstRowInSlice || m_parallelFilter[row - 1].m_lastDeblocked.get() == m_numCols, "previous row not finish");

        m_parallelFilter[row].m_allowedCol.set(m_numCols);
        m_parallelFilter[row].processTasks(-1);

        if (ctu->m_bLastRowInSlice)
        {
            /* TODO: Early start last row */
            if ((!ctu->m_bFirstRowInSlice) && (m_parallelFilter[row - 1].m_lastDeblocked.get() != m_numCols))
                x265_log(m_param, X265_LOG_WARNING, "detected ParallelFilter race condition on last row\n");

            /* Apply SAO on last row of CUs, because we always apply SAO on row[X-1] */
            if (m_useSao)
            {
                for(int col = 0; col < m_numCols; col++)
                {
                    // NOTE: must use processSaoUnitCu(), it include TQBypass logic
                    m_parallelFilter[row].processSaoCTU(saoParam, col);
                }
            }

            // Process border extension on last row
            for(int col = 0; col < m_numCols; col++)
            {
                // m_reconColCount will be set in processPostCu()
                m_parallelFilter[row].processPostCu(col);
            }
        }
    }

    // this row of CTUs has been encoded
    if (!ctu->m_bFirstRowInSlice)
        processPostRow(row - 1, layer);

    // NOTE: slices parallelism will be execute out-of-order
    int numRowFinished = 0;
    if (m_frame->m_reconRowFlag)
    {
        for (numRowFinished = 0; numRowFinished < m_numRows; numRowFinished++)
        {
            if (!m_frame->m_reconRowFlag[numRowFinished].get())
                break;

            if (numRowFinished == row)
                continue;
        }
    }

    if (numRowFinished == m_numRows)
    {
        if (m_useSao)
        {
            // Merge numNoSao into RootNode (Node0)
            for(int i = 1; i < m_numRows; i++)
            {
                m_parallelFilter[0].m_sao.m_numNoSao[0] += m_parallelFilter[i].m_sao.m_numNoSao[0];
                m_parallelFilter[0].m_sao.m_numNoSao[1] += m_parallelFilter[i].m_sao.m_numNoSao[1];
            }

            m_parallelFilter[0].m_sao.rdoSaoUnitRowEnd(saoParam, encData.m_slice->m_sps->numCUsInFrame);
        }
    }

    if (ctu->m_bLastRowInSlice)
        processPostRow(row, layer);
}

void FrameFilter::processPostRow(int row, int layer)
{
    PicYuv *reconPic = m_frame->m_reconPic[0];
    const uint32_t numCols = m_frame->m_encData->m_slice->m_sps->numCuInWidth;
    const uint32_t lineStartCUAddr = row * numCols;

    /* Generate integral planes for SEA motion search */
    if(m_param->searchMethod == X265_SEA)
        computeMEIntegral(row, layer);
    // Notify other FrameEncoders that this row of reconstructed pixels is available
    m_frame->m_reconRowFlag[row].set(1);

    uint32_t cuAddr = lineStartCUAddr;
    if (m_param->bEnablePsnr)
    {
        PicYuv* fencPic = m_frame->m_fencPic;

        intptr_t stride = reconPic->m_stride;
        uint32_t width  = reconPic->m_picWidth - m_pad[0];
        uint32_t height = m_parallelFilter[row].getCUHeight();

        uint64_t ssdY = m_frameEncoder->m_top->computeSSD(fencPic->getLumaAddr(cuAddr), reconPic->getLumaAddr(cuAddr), stride, width, height, m_param);
        m_frameEncoder->m_SSDY[layer] += ssdY;

        if (m_param->internalCsp != X265_CSP_I400)
        {
            height >>= m_vChromaShift;
            width >>= m_hChromaShift;
            stride = reconPic->m_strideC;

            uint64_t ssdU = m_frameEncoder->m_top->computeSSD(fencPic->getCbAddr(cuAddr), reconPic->getCbAddr(cuAddr), stride, width, height, m_param);
            uint64_t ssdV = m_frameEncoder->m_top->computeSSD(fencPic->getCrAddr(cuAddr), reconPic->getCrAddr(cuAddr), stride, width, height, m_param);

            m_frameEncoder->m_SSDU[layer] += ssdU;
            m_frameEncoder->m_SSDV[layer] += ssdV;
        }
    }

    if (m_param->bEnableSsim && m_ssimBuf)
    {
        pixel *rec = reconPic->m_picOrg[0];
        pixel *fenc = m_frame->m_fencPic->m_picOrg[0];
        intptr_t stride1 = reconPic->m_stride;
        intptr_t stride2 = m_frame->m_fencPic->m_stride;
        uint32_t bEnd = ((row) == (this->m_numRows - 1));
        uint32_t bStart = (row == 0);
        uint32_t minPixY = row * m_param->maxCUSize - 4 * !bStart;
        uint32_t maxPixY = X265_MIN((row + 1) * m_param->maxCUSize - 4 * !bEnd, (uint32_t)m_param->sourceHeight);
        uint32_t ssim_cnt;
        x265_emms();

        /* SSIM is done for each row in blocks of 4x4 . The First blocks are offset by 2 pixels to the right
        * to avoid alignment of ssim blocks with DCT blocks. */
        minPixY += bStart ? 2 : -6;
        m_frameEncoder->m_ssim[layer] += calculateSSIM(rec + 2 + minPixY * stride1, stride1, fenc + 2 + minPixY * stride2, stride2,
                                                m_param->sourceWidth - 2, maxPixY - minPixY, m_ssimBuf, ssim_cnt);
        m_frameEncoder->m_ssimCnt[layer] += ssim_cnt;
    }

    if (m_param->maxSlices == 1)
    {
        uint32_t height = m_parallelFilter[row].getCUHeight();
        m_frameEncoder->initDecodedPictureHashSEI(row, cuAddr, height, layer);
    } // end of (m_param->maxSlices == 1)

    if (ATOMIC_INC(&m_frameEncoder->m_completionCount) == 2 * (int)m_frameEncoder->m_numRows)
    {
        m_frameEncoder->m_completionEvent.trigger();
    }
}

void FrameFilter::computeMEIntegral(int row, int layer)
{
    int lastRow = row == (int)m_frame->m_encData->m_slice->m_sps->numCuInHeight - 1;
    if (m_frame->m_lowres.sliceType != X265_TYPE_B || !layer)
    {
        /* If WPP, other than first row, integral calculation for current row needs to wait till the
        * integral for the previous row is computed */
        if (m_param->bEnableWavefront && row)
        {
            while (m_parallelFilter[row - 1].m_frameFilter->integralCompleted.get() == 0)
            {
                m_parallelFilter[row - 1].m_frameFilter->integralCompleted.waitForChange(0);
            }
        }

        int stride = (int)m_frame->m_reconPic[0]->m_stride;
        int padX = m_param->maxCUSize + 32;
        int padY = m_param->maxCUSize + 16;
        int numCuInHeight = m_frame->m_encData->m_slice->m_sps->numCuInHeight;
        int maxHeight = numCuInHeight * m_param->maxCUSize;
        int startRow = 0;

        if (m_param->interlaceMode)
            startRow = (row * m_param->maxCUSize >> 1);
        else
            startRow = row * m_param->maxCUSize;

        int height = lastRow ? (maxHeight + m_param->maxCUSize * m_param->interlaceMode) : (((row + m_param->interlaceMode) * m_param->maxCUSize) + m_param->maxCUSize);

        if (!row)
        {
            for (int i = 0; i < INTEGRAL_PLANE_NUM; i++)
                memset(m_frame->m_encData->m_meIntegral[i] - padY * stride - padX, 0, stride * sizeof(uint32_t));
            startRow = -padY;
        }

        if (lastRow)
            height += padY - 1;

        for (int y = startRow; y < height; y++)
        {
            pixel    *pix = m_frame->m_reconPic[0]->m_picOrg[0] + y * stride - padX;
            uint32_t *sum32x32 = m_frame->m_encData->m_meIntegral[0] + (y + 1) * stride - padX;
            uint32_t *sum32x24 = m_frame->m_encData->m_meIntegral[1] + (y + 1) * stride - padX;
            uint32_t *sum32x8 = m_frame->m_encData->m_meIntegral[2] + (y + 1) * stride - padX;
            uint32_t *sum24x32 = m_frame->m_encData->m_meIntegral[3] + (y + 1) * stride - padX;
            uint32_t *sum16x16 = m_frame->m_encData->m_meIntegral[4] + (y + 1) * stride - padX;
            uint32_t *sum16x12 = m_frame->m_encData->m_meIntegral[5] + (y + 1) * stride - padX;
            uint32_t *sum16x4 = m_frame->m_encData->m_meIntegral[6] + (y + 1) * stride - padX;
            uint32_t *sum12x16 = m_frame->m_encData->m_meIntegral[7] + (y + 1) * stride - padX;
            uint32_t *sum8x32 = m_frame->m_encData->m_meIntegral[8] + (y + 1) * stride - padX;
            uint32_t *sum8x8 = m_frame->m_encData->m_meIntegral[9] + (y + 1) * stride - padX;
            uint32_t *sum4x16 = m_frame->m_encData->m_meIntegral[10] + (y + 1) * stride - padX;
            uint32_t *sum4x4 = m_frame->m_encData->m_meIntegral[11] + (y + 1) * stride - padX;

            /*For width = 32 */
            primitives.integral_inith[INTEGRAL_32](sum32x32, pix, stride);
            if (y >= 32 - padY)
                primitives.integral_initv[INTEGRAL_32](sum32x32 - 32 * stride, stride);
            primitives.integral_inith[INTEGRAL_32](sum32x24, pix, stride);
            if (y >= 24 - padY)
                primitives.integral_initv[INTEGRAL_24](sum32x24 - 24 * stride, stride);
            primitives.integral_inith[INTEGRAL_32](sum32x8, pix, stride);
            if (y >= 8 - padY)
                primitives.integral_initv[INTEGRAL_8](sum32x8 - 8 * stride, stride);
            /*For width = 24 */
            primitives.integral_inith[INTEGRAL_24](sum24x32, pix, stride);
            if (y >= 32 - padY)
                primitives.integral_initv[INTEGRAL_32](sum24x32 - 32 * stride, stride);
            /*For width = 16 */
            primitives.integral_inith[INTEGRAL_16](sum16x16, pix, stride);
            if (y >= 16 - padY)
                primitives.integral_initv[INTEGRAL_16](sum16x16 - 16 * stride, stride);
            primitives.integral_inith[INTEGRAL_16](sum16x12, pix, stride);
            if (y >= 12 - padY)
                primitives.integral_initv[INTEGRAL_12](sum16x12 - 12 * stride, stride);
            primitives.integral_inith[INTEGRAL_16](sum16x4, pix, stride);
            if (y >= 4 - padY)
                primitives.integral_initv[INTEGRAL_4](sum16x4 - 4 * stride, stride);
            /*For width = 12 */
            primitives.integral_inith[INTEGRAL_12](sum12x16, pix, stride);
            if (y >= 16 - padY)
                primitives.integral_initv[INTEGRAL_16](sum12x16 - 16 * stride, stride);
            /*For width = 8 */
            primitives.integral_inith[INTEGRAL_8](sum8x32, pix, stride);
            if (y >= 32 - padY)
                primitives.integral_initv[INTEGRAL_32](sum8x32 - 32 * stride, stride);
            primitives.integral_inith[INTEGRAL_8](sum8x8, pix, stride);
            if (y >= 8 - padY)
                primitives.integral_initv[INTEGRAL_8](sum8x8 - 8 * stride, stride);
            /*For width = 4 */
            primitives.integral_inith[INTEGRAL_4](sum4x16, pix, stride);
            if (y >= 16 - padY)
                primitives.integral_initv[INTEGRAL_16](sum4x16 - 16 * stride, stride);
            primitives.integral_inith[INTEGRAL_4](sum4x4, pix, stride);
            if (y >= 4 - padY)
                primitives.integral_initv[INTEGRAL_4](sum4x4 - 4 * stride, stride);
        }
        m_parallelFilter[row].m_frameFilter->integralCompleted.set(1);
    }
}

/* Function to calculate SSIM for each row */
static float calculateSSIM(pixel *pix1, intptr_t stride1, pixel *pix2, intptr_t stride2, uint32_t width, uint32_t height, void *buf, uint32_t& cnt)
{
    uint32_t z = 0;
    float ssim = 0.0;

    int(*sum0)[4] = (int(*)[4])buf;
    int(*sum1)[4] = sum0 + (width >> 2) + 3;
    width >>= 2;
    height >>= 2;

    for (uint32_t y = 1; y < height; y++)
    {
        for (; z <= y; z++)
        {
            std::swap(sum0, sum1);
            for (uint32_t x = 0; x < width; x += 2)
                primitives.ssim_4x4x2_core(&pix1[4 * (x + (z * stride1))], stride1, &pix2[4 * (x + (z * stride2))], stride2, &sum0[x]);
        }

        for (uint32_t x = 0; x < width - 1; x += 4)
            ssim += primitives.ssim_end_4(sum0 + x, sum1 + x, X265_MIN(4, width - x - 1));
    }

    cnt = (height - 1) * (width - 1);
    return ssim;
}