File: dct-prim.cpp

package info (click to toggle)
x265 4.1-4
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 15,452 kB
  • sloc: asm: 187,063; cpp: 118,996; ansic: 741; makefile: 146; sh: 91; python: 11
file content (1146 lines) | stat: -rw-r--r-- 37,866 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
#include "dct-prim.h"


#if HAVE_NEON

#include <arm_neon.h>

#define X265_PRAGMA(text)       _Pragma(#text)
#if defined(__clang__)
#define X265_PRAGMA_UNROLL(n)   X265_PRAGMA(unroll(n))
#elif defined(__GNUC__)
#define X265_PRAGMA_UNROLL(n)   X265_PRAGMA(GCC unroll (n))
#else
#define X265_PRAGMA_UNROLL(n)
#endif

extern "C" void PFX(dct16_neon)(const int16_t *src, int16_t *dst, intptr_t srcStride);
extern "C" void PFX(idct16_neon)(const int16_t *src, int16_t *dst, intptr_t dstStride);

namespace
{
using namespace X265_NS;

static void transpose_4x4x16(int16x4_t &x0, int16x4_t &x1, int16x4_t &x2, int16x4_t &x3)
{
    int32x2_t s0, s1, s2, s3;

    s0 = vtrn1_s32(vreinterpret_s32_s16(x0), vreinterpret_s32_s16(x2));
    s1 = vtrn1_s32(vreinterpret_s32_s16(x1), vreinterpret_s32_s16(x3));
    s2 = vtrn2_s32(vreinterpret_s32_s16(x0), vreinterpret_s32_s16(x2));
    s3 = vtrn2_s32(vreinterpret_s32_s16(x1), vreinterpret_s32_s16(x3));

    x0 = vtrn1_s16(vreinterpret_s16_s32(s0), vreinterpret_s16_s32(s1));
    x1 = vtrn2_s16(vreinterpret_s16_s32(s0), vreinterpret_s16_s32(s1));
    x2 = vtrn1_s16(vreinterpret_s16_s32(s2), vreinterpret_s16_s32(s3));
    x3 = vtrn2_s16(vreinterpret_s16_s32(s2), vreinterpret_s16_s32(s3));
}



static int scanPosLast_opt(const uint16_t *scan, const coeff_t *coeff, uint16_t *coeffSign, uint16_t *coeffFlag,
                           uint8_t *coeffNum, int numSig, const uint16_t * /*scanCG4x4*/, const int /*trSize*/)
{

    // This is an optimized function for scanPosLast, which removes the rmw dependency, once integrated into mainline x265, should replace reference implementation
    // For clarity, left the original reference code in comments
    int scanPosLast = 0;

    uint16_t cSign = 0;
    uint16_t cFlag = 0;
    uint8_t cNum = 0;

    uint32_t prevcgIdx = 0;
    do
    {
        const uint32_t cgIdx = (uint32_t)scanPosLast >> MLS_CG_SIZE;

        const uint32_t posLast = scan[scanPosLast];

        const int curCoeff = coeff[posLast];
        const uint32_t isNZCoeff = (curCoeff != 0);
        /*
        NOTE: the new algorithm is complicated, so I keep reference code here
        uint32_t posy   = posLast >> log2TrSize;
        uint32_t posx   = posLast - (posy << log2TrSize);
        uint32_t blkIdx0 = ((posy >> MLS_CG_LOG2_SIZE) << codingParameters.log2TrSizeCG) + (posx >> MLS_CG_LOG2_SIZE);
        const uint32_t blkIdx = ((posLast >> (2 * MLS_CG_LOG2_SIZE)) & ~maskPosXY) + ((posLast >> MLS_CG_LOG2_SIZE) & maskPosXY);
        sigCoeffGroupFlag64 |= ((uint64_t)isNZCoeff << blkIdx);
        */

        // get L1 sig map
        numSig -= isNZCoeff;

        if (scanPosLast % (1 << MLS_CG_SIZE) == 0)
        {
            coeffSign[prevcgIdx] = cSign;
            coeffFlag[prevcgIdx] = cFlag;
            coeffNum[prevcgIdx] = cNum;
            cSign = 0;
            cFlag = 0;
            cNum = 0;
        }
        // TODO: optimize by instruction BTS
        cSign += (uint16_t)(((curCoeff < 0) ? 1 : 0) << cNum);
        cFlag = (cFlag << 1) + (uint16_t)isNZCoeff;
        cNum += (uint8_t)isNZCoeff;
        prevcgIdx = cgIdx;
        scanPosLast++;
    }
    while (numSig > 0);

    coeffSign[prevcgIdx] = cSign;
    coeffFlag[prevcgIdx] = cFlag;
    coeffNum[prevcgIdx] = cNum;
    return scanPosLast - 1;
}


#if (MLS_CG_SIZE == 4)
template<int log2TrSize>
static void nonPsyRdoQuant_neon(int16_t *m_resiDctCoeff, int64_t *costUncoded, int64_t *totalUncodedCost,
                                int64_t *totalRdCost, uint32_t blkPos)
{
    const int transformShift = MAX_TR_DYNAMIC_RANGE - X265_DEPTH -
                               log2TrSize; /* Represents scaling through forward transform */
    const int scaleBits = SCALE_BITS - 2 * transformShift;
    const uint32_t trSize = 1 << log2TrSize;

    int64x2_t vcost_sum_0 = vdupq_n_s64(0);
    int64x2_t vcost_sum_1 = vdupq_n_s64(0);
    for (int y = 0; y < MLS_CG_SIZE; y++)
    {
        int16x4_t in = vld1_s16(&m_resiDctCoeff[blkPos]);
        int32x4_t mul = vmull_s16(in, in);
        int64x2_t cost0, cost1;
        cost0 = vshll_n_s32(vget_low_s32(mul), scaleBits);
        cost1 = vshll_high_n_s32(mul, scaleBits);
        vst1q_s64(&costUncoded[blkPos + 0], cost0);
        vst1q_s64(&costUncoded[blkPos + 2], cost1);
        vcost_sum_0 = vaddq_s64(vcost_sum_0, cost0);
        vcost_sum_1 = vaddq_s64(vcost_sum_1, cost1);
        blkPos += trSize;
    }
    int64_t sum = vaddvq_s64(vaddq_s64(vcost_sum_0, vcost_sum_1));
    *totalUncodedCost += sum;
    *totalRdCost += sum;
}

template<int log2TrSize>
static void psyRdoQuant_neon(int16_t *m_resiDctCoeff, int16_t *m_fencDctCoeff, int64_t *costUncoded,
                             int64_t *totalUncodedCost, int64_t *totalRdCost, int64_t *psyScale, uint32_t blkPos)
{
    const int transformShift = MAX_TR_DYNAMIC_RANGE - X265_DEPTH -
                               log2TrSize; /* Represents scaling through forward transform */
    const int scaleBits = SCALE_BITS - 2 * transformShift;
    const uint32_t trSize = 1 << log2TrSize;
    //using preprocessor to bypass clang bug
    const int max = X265_MAX(0, (2 * transformShift + 1));

    int64x2_t vcost_sum_0 = vdupq_n_s64(0);
    int64x2_t vcost_sum_1 = vdupq_n_s64(0);
    int32x4_t vpsy = vdupq_n_s32(*psyScale);
    for (int y = 0; y < MLS_CG_SIZE; y++)
    {
        int32x4_t signCoef = vmovl_s16(vld1_s16(&m_resiDctCoeff[blkPos]));
        int32x4_t fencCoef = vmovl_s16(vld1_s16(&m_fencDctCoeff[blkPos]));
        int32x4_t predictedCoef = vsubq_s32(fencCoef, signCoef);
        int64x2_t cost0, cost1;
        cost0 = vmull_s32(vget_low_s32(signCoef), vget_low_s32(signCoef));
        cost1 = vmull_high_s32(signCoef, signCoef);
        cost0 = vshlq_n_s64(cost0, scaleBits);
        cost1 = vshlq_n_s64(cost1, scaleBits);
        int64x2_t neg0 = vmull_s32(vget_low_s32(predictedCoef), vget_low_s32(vpsy));
        int64x2_t neg1 = vmull_high_s32(predictedCoef, vpsy);
        if (max > 0)
        {
            int64x2_t shift = vdupq_n_s64(-max);
            neg0 = vshlq_s64(neg0, shift);
            neg1 = vshlq_s64(neg1, shift);
        }
        cost0 = vsubq_s64(cost0, neg0);
        cost1 = vsubq_s64(cost1, neg1);
        vst1q_s64(&costUncoded[blkPos + 0], cost0);
        vst1q_s64(&costUncoded[blkPos + 2], cost1);
        vcost_sum_0 = vaddq_s64(vcost_sum_0, cost0);
        vcost_sum_1 = vaddq_s64(vcost_sum_1, cost1);

        blkPos += trSize;
    }
    int64_t sum = vaddvq_s64(vaddq_s64(vcost_sum_0, vcost_sum_1));
    *totalUncodedCost += sum;
    *totalRdCost += sum;
}

#else
#error "MLS_CG_SIZE must be 4 for neon version"
#endif



template<int trSize>
int  count_nonzero_neon(const int16_t *quantCoeff)
{
    X265_CHECK(((intptr_t)quantCoeff & 15) == 0, "quant buffer not aligned\n");
    int count = 0;
    int16x8_t vcount = vdupq_n_s16(0);
    const int numCoeff = trSize * trSize;
    int i = 0;
    for (; (i + 8) <= numCoeff; i += 8)
    {
        int16x8_t in = vld1q_s16(&quantCoeff[i]);
        uint16x8_t tst = vtstq_s16(in, in);
        vcount = vaddq_s16(vcount, vreinterpretq_s16_u16(tst));
    }
    for (; i < numCoeff; i++)
    {
        count += quantCoeff[i] != 0;
    }

    return count - vaddvq_s16(vcount);
}

template<int trSize>
uint32_t copy_count_neon(int16_t *coeff, const int16_t *residual, intptr_t resiStride)
{
    uint32_t numSig = 0;
    int16x8_t vcount = vdupq_n_s16(0);
    for (int k = 0; k < trSize; k++)
    {
        int j = 0;
        for (; (j + 8) <= trSize; j += 8)
        {
            int16x8_t in = vld1q_s16(&residual[j]);
            vst1q_s16(&coeff[j], in);
            uint16x8_t tst = vtstq_s16(in, in);
            vcount = vaddq_s16(vcount, vreinterpretq_s16_u16(tst));
        }
        for (; j < trSize; j++)
        {
            coeff[j] = residual[j];
            numSig += (residual[j] != 0);
        }
        residual += resiStride;
        coeff += trSize;
    }

    return numSig - vaddvq_s16(vcount);
}

template<int shift>
static inline void partialButterfly16_neon(const int16_t *src, int16_t *dst)
{
    const int line = 16;

    int16x8_t O[line];
    int32x4_t EO[line];
    int32x4_t EEE[line];
    int32x4_t EEO[line];

    for (int i = 0; i < line; i += 2)
    {
        int16x8_t s0_lo = vld1q_s16(src + i * line);
        int16x8_t s0_hi = rev16(vld1q_s16(src + i * line + 8));

        int16x8_t s1_lo = vld1q_s16(src + (i + 1) * line);
        int16x8_t s1_hi = rev16(vld1q_s16(src + (i + 1) * line + 8));

        int32x4_t E0[2];
        E0[0] = vaddl_s16(vget_low_s16(s0_lo), vget_low_s16(s0_hi));
        E0[1] = vaddl_s16(vget_high_s16(s0_lo), vget_high_s16(s0_hi));

        int32x4_t E1[2];
        E1[0] = vaddl_s16(vget_low_s16(s1_lo), vget_low_s16(s1_hi));
        E1[1] = vaddl_s16(vget_high_s16(s1_lo), vget_high_s16(s1_hi));

        O[i + 0] = vsubq_s16(s0_lo, s0_hi);
        O[i + 1] = vsubq_s16(s1_lo, s1_hi);

        int32x4_t EE0 = vaddq_s32(E0[0], rev32(E0[1]));
        int32x4_t EE1 = vaddq_s32(E1[0], rev32(E1[1]));
        EO[i + 0] = vsubq_s32(E0[0], rev32(E0[1]));
        EO[i + 1] = vsubq_s32(E1[0], rev32(E1[1]));

        int32x4_t t0 = vreinterpretq_s32_s64(
            vzip1q_s64(vreinterpretq_s64_s32(EE0), vreinterpretq_s64_s32(EE1)));
        int32x4_t t1 = vrev64q_s32(vreinterpretq_s32_s64(vzip2q_s64(
            vreinterpretq_s64_s32(EE0), vreinterpretq_s64_s32(EE1))));


        EEE[i / 2] = vaddq_s32(t0, t1);
        EEO[i / 2] = vsubq_s32(t0, t1);
    }

    for (int i = 0; i < line; i += 4)
    {
        for (int k = 1; k < 16; k += 2)
        {
            int16x8_t c0_c4 = vld1q_s16(&g_t16[k][0]);

            int32x4_t t0 = vmull_s16(vget_low_s16(c0_c4),
                                     vget_low_s16(O[i + 0]));
            int32x4_t t1 = vmull_s16(vget_low_s16(c0_c4),
                                     vget_low_s16(O[i + 1]));
            int32x4_t t2 = vmull_s16(vget_low_s16(c0_c4),
                                     vget_low_s16(O[i + 2]));
            int32x4_t t3 = vmull_s16(vget_low_s16(c0_c4),
                                     vget_low_s16(O[i + 3]));
            t0 = vmlal_s16(t0, vget_high_s16(c0_c4), vget_high_s16(O[i + 0]));
            t1 = vmlal_s16(t1, vget_high_s16(c0_c4), vget_high_s16(O[i + 1]));
            t2 = vmlal_s16(t2, vget_high_s16(c0_c4), vget_high_s16(O[i + 2]));
            t3 = vmlal_s16(t3, vget_high_s16(c0_c4), vget_high_s16(O[i + 3]));

            int32x4_t t = vpaddq_s32(vpaddq_s32(t0, t1), vpaddq_s32(t2, t3));
            int16x4_t res = vrshrn_n_s32(t, shift);
            vst1_s16(dst + k * line, res);
        }

        for (int k = 2; k < 16; k += 4)
        {
            int32x4_t c0 = vmovl_s16(vld1_s16(&g_t16[k][0]));
            int32x4_t t0 = vmulq_s32(c0, EO[i + 0]);
            int32x4_t t1 = vmulq_s32(c0, EO[i + 1]);
            int32x4_t t2 = vmulq_s32(c0, EO[i + 2]);
            int32x4_t t3 = vmulq_s32(c0, EO[i + 3]);
            int32x4_t t = vpaddq_s32(vpaddq_s32(t0, t1), vpaddq_s32(t2, t3));

            int16x4_t res = vrshrn_n_s32(t, shift);
            vst1_s16(dst + k * line, res);
        }

        int32x4_t c0 = vld1q_s32(t8_even[0]);
        int32x4_t c4 = vld1q_s32(t8_even[1]);
        int32x4_t c8 = vld1q_s32(t8_even[2]);
        int32x4_t c12 = vld1q_s32(t8_even[3]);

        int32x4_t t0 = vpaddq_s32(EEE[i / 2 + 0], EEE[i / 2 + 1]);
        int32x4_t t1 = vmulq_s32(c0, t0);
        int16x4_t res0 = vrshrn_n_s32(t1, shift);
        vst1_s16(dst + 0 * line, res0);

        int32x4_t t2 = vmulq_s32(c4, EEO[i / 2 + 0]);
        int32x4_t t3 = vmulq_s32(c4, EEO[i / 2 + 1]);
        int16x4_t res4 = vrshrn_n_s32(vpaddq_s32(t2, t3), shift);
        vst1_s16(dst + 4 * line, res4);

        int32x4_t t4 = vmulq_s32(c8, EEE[i / 2 + 0]);
        int32x4_t t5 = vmulq_s32(c8, EEE[i / 2 + 1]);
        int16x4_t res8 = vrshrn_n_s32(vpaddq_s32(t4, t5), shift);
        vst1_s16(dst + 8 * line, res8);

        int32x4_t t6 = vmulq_s32(c12, EEO[i / 2 + 0]);
        int32x4_t t7 = vmulq_s32(c12, EEO[i / 2 + 1]);
        int16x4_t res12 = vrshrn_n_s32(vpaddq_s32(t6, t7), shift);
        vst1_s16(dst + 12 * line, res12);

        dst += 4;
    }
}

template<int shift>
static inline void partialButterfly32_neon(const int16_t *src, int16_t *dst)
{
    const int line = 32;

    int16x8_t O[line][2];
    int32x4_t EO[line][2];
    int32x4_t EEO[line];
    int32x4_t EEEE[line / 2];
    int32x4_t EEEO[line / 2];

    for (int i = 0; i < line; i += 2)
    {
        int16x8x4_t in_lo = vld1q_s16_x4(src + (i + 0) * line);
        in_lo.val[2] = rev16(in_lo.val[2]);
        in_lo.val[3] = rev16(in_lo.val[3]);

        int16x8x4_t in_hi = vld1q_s16_x4(src + (i + 1) * line);
        in_hi.val[2] = rev16(in_hi.val[2]);
        in_hi.val[3] = rev16(in_hi.val[3]);

        int32x4_t E0[4];
        E0[0] = vaddl_s16(vget_low_s16(in_lo.val[0]),
                          vget_low_s16(in_lo.val[3]));
        E0[1] = vaddl_s16(vget_high_s16(in_lo.val[0]),
                          vget_high_s16(in_lo.val[3]));
        E0[2] = vaddl_s16(vget_low_s16(in_lo.val[1]),
                          vget_low_s16(in_lo.val[2]));
        E0[3] = vaddl_s16(vget_high_s16(in_lo.val[1]),
                          vget_high_s16(in_lo.val[2]));

        int32x4_t E1[4];
        E1[0] = vaddl_s16(vget_low_s16(in_hi.val[0]),
                          vget_low_s16(in_hi.val[3]));
        E1[1] = vaddl_s16(vget_high_s16(in_hi.val[0]),
                          vget_high_s16(in_hi.val[3]));
        E1[2] = vaddl_s16(vget_low_s16(in_hi.val[1]),
                          vget_low_s16(in_hi.val[2]));
        E1[3] = vaddl_s16(vget_high_s16(in_hi.val[1]),
                          vget_high_s16(in_hi.val[2]));

        O[i + 0][0] = vsubq_s16(in_lo.val[0], in_lo.val[3]);
        O[i + 0][1] = vsubq_s16(in_lo.val[1], in_lo.val[2]);

        O[i + 1][0] = vsubq_s16(in_hi.val[0], in_hi.val[3]);
        O[i + 1][1] = vsubq_s16(in_hi.val[1], in_hi.val[2]);

        int32x4_t EE0[2];
        E0[3] = rev32(E0[3]);
        E0[2] = rev32(E0[2]);
        EE0[0] = vaddq_s32(E0[0], E0[3]);
        EE0[1] = vaddq_s32(E0[1], E0[2]);
        EO[i + 0][0] = vsubq_s32(E0[0], E0[3]);
        EO[i + 0][1] = vsubq_s32(E0[1], E0[2]);

        int32x4_t EE1[2];
        E1[3] = rev32(E1[3]);
        E1[2] = rev32(E1[2]);
        EE1[0] = vaddq_s32(E1[0], E1[3]);
        EE1[1] = vaddq_s32(E1[1], E1[2]);
        EO[i + 1][0] = vsubq_s32(E1[0], E1[3]);
        EO[i + 1][1] = vsubq_s32(E1[1], E1[2]);

        int32x4_t EEE0;
        EE0[1] = rev32(EE0[1]);
        EEE0 = vaddq_s32(EE0[0], EE0[1]);
        EEO[i + 0] = vsubq_s32(EE0[0], EE0[1]);

        int32x4_t EEE1;
        EE1[1] = rev32(EE1[1]);
        EEE1 = vaddq_s32(EE1[0], EE1[1]);
        EEO[i + 1] = vsubq_s32(EE1[0], EE1[1]);

        int32x4_t t0 = vreinterpretq_s32_s64(
            vzip1q_s64(vreinterpretq_s64_s32(EEE0),
                       vreinterpretq_s64_s32(EEE1)));
        int32x4_t t1 = vrev64q_s32(vreinterpretq_s32_s64(
            vzip2q_s64(vreinterpretq_s64_s32(EEE0),
                       vreinterpretq_s64_s32(EEE1))));

        EEEE[i / 2] = vaddq_s32(t0, t1);
        EEEO[i / 2] = vsubq_s32(t0, t1);
    }

    for (int k = 1; k < 32; k += 2)
    {
        int16_t *d = dst + k * line;

        int16x8_t c0_c1 = vld1q_s16(&g_t32[k][0]);
        int16x8_t c2_c3 = vld1q_s16(&g_t32[k][8]);
        int16x4_t c0 = vget_low_s16(c0_c1);
        int16x4_t c1 = vget_high_s16(c0_c1);
        int16x4_t c2 = vget_low_s16(c2_c3);
        int16x4_t c3 = vget_high_s16(c2_c3);

        for (int i = 0; i < line; i += 4)
        {
            int32x4_t t[4];
            for (int j = 0; j < 4; ++j) {
                t[j] = vmull_s16(c0, vget_low_s16(O[i + j][0]));
                t[j] = vmlal_s16(t[j], c1, vget_high_s16(O[i + j][0]));
                t[j] = vmlal_s16(t[j], c2, vget_low_s16(O[i + j][1]));
                t[j] = vmlal_s16(t[j], c3, vget_high_s16(O[i + j][1]));
            }

            int32x4_t t0123 = vpaddq_s32(vpaddq_s32(t[0], t[1]),
                                         vpaddq_s32(t[2], t[3]));
            int16x4_t res = vrshrn_n_s32(t0123, shift);
            vst1_s16(d, res);

            d += 4;
        }
    }

    for (int k = 2; k < 32; k += 4)
    {
        int16_t *d = dst + k * line;

        int32x4_t c0 = vmovl_s16(vld1_s16(&g_t32[k][0]));
        int32x4_t c1 = vmovl_s16(vld1_s16(&g_t32[k][4]));

        for (int i = 0; i < line; i += 4)
        {
            int32x4_t t[4];
            for (int j = 0; j < 4; ++j) {
                t[j] = vmulq_s32(c0, EO[i + j][0]);
                t[j] = vmlaq_s32(t[j], c1, EO[i + j][1]);
            }

            int32x4_t t0123 = vpaddq_s32(vpaddq_s32(t[0], t[1]),
                                         vpaddq_s32(t[2], t[3]));
            int16x4_t res = vrshrn_n_s32(t0123, shift);
            vst1_s16(d, res);

            d += 4;
        }
    }

    for (int k = 4; k < 32; k += 8)
    {
        int16_t *d = dst + k * line;

        int32x4_t c = vmovl_s16(vld1_s16(&g_t32[k][0]));

        for (int i = 0; i < line; i += 4)
        {
            int32x4_t t0 = vmulq_s32(c, EEO[i + 0]);
            int32x4_t t1 = vmulq_s32(c, EEO[i + 1]);
            int32x4_t t2 = vmulq_s32(c, EEO[i + 2]);
            int32x4_t t3 = vmulq_s32(c, EEO[i + 3]);

            int32x4_t t = vpaddq_s32(vpaddq_s32(t0, t1), vpaddq_s32(t2, t3));
            int16x4_t res = vrshrn_n_s32(t, shift);
            vst1_s16(d, res);

            d += 4;
        }
    }

    int32x4_t c0 = vld1q_s32(t8_even[0]);
    int32x4_t c8 = vld1q_s32(t8_even[1]);
    int32x4_t c16 = vld1q_s32(t8_even[2]);
    int32x4_t c24 = vld1q_s32(t8_even[3]);

    for (int i = 0; i < line; i += 4)
    {
        int32x4_t t0 = vpaddq_s32(EEEE[i / 2 + 0], EEEE[i / 2 + 1]);
        int32x4_t t1 = vmulq_s32(c0, t0);
        int16x4_t res0 = vrshrn_n_s32(t1, shift);
        vst1_s16(dst + 0 * line, res0);

        int32x4_t t2 = vmulq_s32(c8, EEEO[i / 2 + 0]);
        int32x4_t t3 = vmulq_s32(c8, EEEO[i / 2 + 1]);
        int16x4_t res8 = vrshrn_n_s32(vpaddq_s32(t2, t3), shift);
        vst1_s16(dst + 8 * line, res8);

        int32x4_t t4 = vmulq_s32(c16, EEEE[i / 2 + 0]);
        int32x4_t t5 = vmulq_s32(c16, EEEE[i / 2 + 1]);
        int16x4_t res16 = vrshrn_n_s32(vpaddq_s32(t4, t5), shift);
        vst1_s16(dst + 16 * line, res16);

        int32x4_t t6 = vmulq_s32(c24, EEEO[i / 2 + 0]);
        int32x4_t t7 = vmulq_s32(c24, EEEO[i / 2 + 1]);
        int16x4_t res24 = vrshrn_n_s32(vpaddq_s32(t6, t7), shift);
        vst1_s16(dst + 24 * line, res24);

        dst += 4;
    }
}

template<int shift>
static inline void partialButterfly8_neon(const int16_t *src, int16_t *dst)
{
    const int line = 8;

    int16x4_t O[line];
    int32x4_t EE[line / 2];
    int32x4_t EO[line / 2];

    for (int i = 0; i < line; i += 2)
    {
        int16x4_t s0_lo = vld1_s16(src + i * line);
        int16x4_t s0_hi = vrev64_s16(vld1_s16(src + i * line + 4));

        int16x4_t s1_lo = vld1_s16(src + (i + 1) * line);
        int16x4_t s1_hi = vrev64_s16(vld1_s16(src + (i + 1) * line + 4));

        int32x4_t E0 = vaddl_s16(s0_lo, s0_hi);
        int32x4_t E1 = vaddl_s16(s1_lo, s1_hi);

        O[i + 0] = vsub_s16(s0_lo, s0_hi);
        O[i + 1] = vsub_s16(s1_lo, s1_hi);

        int32x4_t t0 = vreinterpretq_s32_s64(
            vzip1q_s64(vreinterpretq_s64_s32(E0), vreinterpretq_s64_s32(E1)));
        int32x4_t t1 = vrev64q_s32(vreinterpretq_s32_s64(
            vzip2q_s64(vreinterpretq_s64_s32(E0), vreinterpretq_s64_s32(E1))));

        EE[i / 2] = vaddq_s32(t0, t1);
        EO[i / 2] = vsubq_s32(t0, t1);
    }

    int16_t *d = dst;

    int32x4_t c0 = vld1q_s32(t8_even[0]);
    int32x4_t c2 = vld1q_s32(t8_even[1]);
    int32x4_t c4 = vld1q_s32(t8_even[2]);
    int32x4_t c6 = vld1q_s32(t8_even[3]);
    int16x4_t c1 = vld1_s16(g_t8[1]);
    int16x4_t c3 = vld1_s16(g_t8[3]);
    int16x4_t c5 = vld1_s16(g_t8[5]);
    int16x4_t c7 = vld1_s16(g_t8[7]);

    for (int j = 0; j < line; j += 4)
    {
        // O
        int32x4_t t01 = vpaddq_s32(vmull_s16(c1, O[j + 0]),
                                   vmull_s16(c1, O[j + 1]));
        int32x4_t t23 = vpaddq_s32(vmull_s16(c1, O[j + 2]),
                                   vmull_s16(c1, O[j + 3]));
        int16x4_t res1 = vrshrn_n_s32(vpaddq_s32(t01, t23), shift);
        vst1_s16(d + 1 * line, res1);

        t01 = vpaddq_s32(vmull_s16(c3, O[j + 0]), vmull_s16(c3, O[j + 1]));
        t23 = vpaddq_s32(vmull_s16(c3, O[j + 2]), vmull_s16(c3, O[j + 3]));
        int16x4_t res3 = vrshrn_n_s32(vpaddq_s32(t01, t23), shift);
        vst1_s16(d + 3 * line, res3);

        t01 = vpaddq_s32(vmull_s16(c5, O[j + 0]), vmull_s16(c5, O[j + 1]));
        t23 = vpaddq_s32(vmull_s16(c5, O[j + 2]), vmull_s16(c5, O[j + 3]));
        int16x4_t res5 = vrshrn_n_s32(vpaddq_s32(t01, t23), shift);
        vst1_s16(d + 5 * line, res5);

        t01 = vpaddq_s32(vmull_s16(c7, O[j + 0]), vmull_s16(c7, O[j + 1]));
        t23 = vpaddq_s32(vmull_s16(c7, O[j + 2]), vmull_s16(c7, O[j + 3]));
        int16x4_t res7 = vrshrn_n_s32(vpaddq_s32(t01, t23), shift);
        vst1_s16(d + 7 * line, res7);

        // EE and EO
        int32x4_t t0 = vpaddq_s32(EE[j / 2 + 0], EE[j / 2 + 1]);
        int32x4_t t1 = vmulq_s32(c0, t0);
        int16x4_t res0 = vrshrn_n_s32(t1, shift);
        vst1_s16(d + 0 * line, res0);

        int32x4_t t2 = vmulq_s32(c2, EO[j / 2 + 0]);
        int32x4_t t3 = vmulq_s32(c2, EO[j / 2 + 1]);
        int16x4_t res2 = vrshrn_n_s32(vpaddq_s32(t2, t3), shift);
        vst1_s16(d + 2 * line, res2);

        int32x4_t t4 = vmulq_s32(c4, EE[j / 2 + 0]);
        int32x4_t t5 = vmulq_s32(c4, EE[j / 2 + 1]);
        int16x4_t res4 = vrshrn_n_s32(vpaddq_s32(t4, t5), shift);
        vst1_s16(d + 4 * line, res4);

        int32x4_t t6 = vmulq_s32(c6, EO[j / 2 + 0]);
        int32x4_t t7 = vmulq_s32(c6, EO[j / 2 + 1]);
        int16x4_t res6 = vrshrn_n_s32(vpaddq_s32(t6, t7), shift);
        vst1_s16(d + 6 * line, res6);

        d += 4;
    }
}

static void partialButterflyInverse4(const int16_t *src, int16_t *dst, int shift, int line)
{
    int j;
    int E[2], O[2];
    int add = 1 << (shift - 1);

    for (j = 0; j < line; j++)
    {
        /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
        O[0] = g_t4[1][0] * src[line] + g_t4[3][0] * src[3 * line];
        O[1] = g_t4[1][1] * src[line] + g_t4[3][1] * src[3 * line];
        E[0] = g_t4[0][0] * src[0] + g_t4[2][0] * src[2 * line];
        E[1] = g_t4[0][1] * src[0] + g_t4[2][1] * src[2 * line];

        /* Combining even and odd terms at each hierarchy levels to calculate the final spatial domain vector */
        dst[0] = (int16_t)(x265_clip3(-32768, 32767, (E[0] + O[0] + add) >> shift));
        dst[1] = (int16_t)(x265_clip3(-32768, 32767, (E[1] + O[1] + add) >> shift));
        dst[2] = (int16_t)(x265_clip3(-32768, 32767, (E[1] - O[1] + add) >> shift));
        dst[3] = (int16_t)(x265_clip3(-32768, 32767, (E[0] - O[0] + add) >> shift));

        src++;
        dst += 4;
    }
}



static void partialButterflyInverse16_neon(const int16_t *src, int16_t *orig_dst, int shift, int line)
{
#define FMAK(x,l) s[l] = vmlal_lane_s16(s[l],vld1_s16(&src[x*line]),vld1_s16(&g_t16[x][k]),l);
#define MULK(x,l) vmull_lane_s16(vld1_s16(&src[x*line]),vld1_s16(&g_t16[x][k]),l);
#define ODD3_15(k) FMAK(3,k);FMAK(5,k);FMAK(7,k);FMAK(9,k);FMAK(11,k);FMAK(13,k);FMAK(15,k);
#define EVEN6_14_STEP4(k) FMAK(6,k);FMAK(10,k);FMAK(14,k);


    int j, k;
    int32x4_t E[8], O[8];
    int32x4_t EE[4], EO[4];
    int32x4_t EEE[2], EEO[2];
    const int add = 1 << (shift - 1);


X265_PRAGMA_UNROLL(4)
    for (j = 0; j < line; j += 4)
    {
        /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */

X265_PRAGMA_UNROLL(2)
        for (k = 0; k < 2; k++)
        {
            int32x4_t s;
            s = vmull_s16(vdup_n_s16(g_t16[4][k]), vld1_s16(&src[4 * line]));
            EEO[k] = vmlal_s16(s, vdup_n_s16(g_t16[12][k]),
                               vld1_s16(&src[12 * line]));
            s = vmull_s16(vdup_n_s16(g_t16[0][k]), vld1_s16(&src[0 * line]));
            EEE[k] = vmlal_s16(s, vdup_n_s16(g_t16[8][k]),
                               vld1_s16(&src[8 * line]));
        }

        /* Combining even and odd terms at each hierarchy levels to calculate the final spatial domain vector */
        EE[0] = vaddq_s32(EEE[0] , EEO[0]);
        EE[2] = vsubq_s32(EEE[1] , EEO[1]);
        EE[1] = vaddq_s32(EEE[1] , EEO[1]);
        EE[3] = vsubq_s32(EEE[0] , EEO[0]);


X265_PRAGMA_UNROLL(1)
        for (k = 0; k < 4; k += 4)
        {
            int32x4_t s[4];
            s[0] = MULK(2, 0);
            s[1] = MULK(2, 1);
            s[2] = MULK(2, 2);
            s[3] = MULK(2, 3);

            EVEN6_14_STEP4(0);
            EVEN6_14_STEP4(1);
            EVEN6_14_STEP4(2);
            EVEN6_14_STEP4(3);

            EO[k] = s[0];
            EO[k + 1] = s[1];
            EO[k + 2] = s[2];
            EO[k + 3] = s[3];
        }



        static const int32x4_t min = vdupq_n_s32(-32768);
        static const int32x4_t max = vdupq_n_s32(32767);
        const int32x4_t minus_shift = vdupq_n_s32(-shift);

X265_PRAGMA_UNROLL(4)
        for (k = 0; k < 4; k++)
        {
            E[k] = vaddq_s32(EE[k] , EO[k]);
            E[k + 4] = vsubq_s32(EE[3 - k] , EO[3 - k]);
        }

X265_PRAGMA_UNROLL(2)
        for (k = 0; k < 8; k += 4)
        {
            int32x4_t s[4];
            s[0] = MULK(1, 0);
            s[1] = MULK(1, 1);
            s[2] = MULK(1, 2);
            s[3] = MULK(1, 3);
            ODD3_15(0);
            ODD3_15(1);
            ODD3_15(2);
            ODD3_15(3);
            O[k] = s[0];
            O[k + 1] = s[1];
            O[k + 2] = s[2];
            O[k + 3] = s[3];
            int32x4_t t;
            int16x4_t x0, x1, x2, x3;

            E[k] = vaddq_s32(vdupq_n_s32(add), E[k]);
            t = vaddq_s32(E[k], O[k]);
            t = vshlq_s32(t, minus_shift);
            t = vmaxq_s32(t, min);
            t = vminq_s32(t, max);
            x0 = vmovn_s32(t);

            E[k + 1] = vaddq_s32(vdupq_n_s32(add), E[k + 1]);
            t = vaddq_s32(E[k + 1], O[k + 1]);
            t = vshlq_s32(t, minus_shift);
            t = vmaxq_s32(t, min);
            t = vminq_s32(t, max);
            x1 = vmovn_s32(t);

            E[k + 2] = vaddq_s32(vdupq_n_s32(add), E[k + 2]);
            t = vaddq_s32(E[k + 2], O[k + 2]);
            t = vshlq_s32(t, minus_shift);
            t = vmaxq_s32(t, min);
            t = vminq_s32(t, max);
            x2 = vmovn_s32(t);

            E[k + 3] = vaddq_s32(vdupq_n_s32(add), E[k + 3]);
            t = vaddq_s32(E[k + 3], O[k + 3]);
            t = vshlq_s32(t, minus_shift);
            t = vmaxq_s32(t, min);
            t = vminq_s32(t, max);
            x3 = vmovn_s32(t);

            transpose_4x4x16(x0, x1, x2, x3);
            vst1_s16(&orig_dst[0 * 16 + k], x0);
            vst1_s16(&orig_dst[1 * 16 + k], x1);
            vst1_s16(&orig_dst[2 * 16 + k], x2);
            vst1_s16(&orig_dst[3 * 16 + k], x3);
        }


X265_PRAGMA_UNROLL(2)
        for (k = 0; k < 8; k += 4)
        {
            int32x4_t t;
            int16x4_t x0, x1, x2, x3;

            t = vsubq_s32(E[7 - k], O[7 - k]);
            t = vshlq_s32(t, minus_shift);
            t = vmaxq_s32(t, min);
            t = vminq_s32(t, max);
            x0 = vmovn_s32(t);

            t = vsubq_s32(E[6 - k], O[6 - k]);
            t = vshlq_s32(t, minus_shift);
            t = vmaxq_s32(t, min);
            t = vminq_s32(t, max);
            x1 = vmovn_s32(t);

            t = vsubq_s32(E[5 - k], O[5 - k]);

            t = vshlq_s32(t, minus_shift);
            t = vmaxq_s32(t, min);
            t = vminq_s32(t, max);
            x2 = vmovn_s32(t);

            t = vsubq_s32(E[4 - k], O[4 - k]);
            t = vshlq_s32(t, minus_shift);
            t = vmaxq_s32(t, min);
            t = vminq_s32(t, max);
            x3 = vmovn_s32(t);

            transpose_4x4x16(x0, x1, x2, x3);
            vst1_s16(&orig_dst[0 * 16 + k + 8], x0);
            vst1_s16(&orig_dst[1 * 16 + k + 8], x1);
            vst1_s16(&orig_dst[2 * 16 + k + 8], x2);
            vst1_s16(&orig_dst[3 * 16 + k + 8], x3);
        }
        orig_dst += 4 * 16;
        src += 4;
    }

#undef MUL
#undef FMA
#undef FMAK
#undef MULK
#undef ODD3_15
#undef EVEN6_14_STEP4


}



static void partialButterflyInverse32_neon(const int16_t *src, int16_t *orig_dst, int shift, int line)
{
#define MUL(x) vmull_s16(vdup_n_s16(g_t32[x][k]),vld1_s16(&src[x*line]));
#define FMA(x) s = vmlal_s16(s,vdup_n_s16(g_t32[x][k]),vld1_s16(&src[x*line]));
#define FMAK(x,l) s[l] = vmlal_lane_s16(s[l],vld1_s16(&src[x*line]),vld1_s16(&g_t32[x][k]),l);
#define MULK(x,l) vmull_lane_s16(vld1_s16(&src[x*line]),vld1_s16(&g_t32[x][k]),l);
#define ODD31(k) FMAK(3,k);FMAK(5,k);FMAK(7,k);FMAK(9,k);FMAK(11,k);FMAK(13,k);FMAK(15,k);FMAK(17,k);FMAK(19,k);FMAK(21,k);FMAK(23,k);FMAK(25,k);FMAK(27,k);FMAK(29,k);FMAK(31,k);

#define ODD15(k) FMAK(6,k);FMAK(10,k);FMAK(14,k);FMAK(18,k);FMAK(22,k);FMAK(26,k);FMAK(30,k);
#define ODD7(k) FMAK(12,k);FMAK(20,k);FMAK(28,k);


    int j, k;
    int32x4_t E[16], O[16];
    int32x4_t EE[8], EO[8];
    int32x4_t EEE[4], EEO[4];
    int32x4_t EEEE[2], EEEO[2];
    int16x4_t dst[32];
    int add = 1 << (shift - 1);

X265_PRAGMA_UNROLL(8)
    for (j = 0; j < line; j += 4)
    {
X265_PRAGMA_UNROLL(4)
        for (k = 0; k < 16; k += 4)
        {
            int32x4_t s[4];
            s[0] = MULK(1, 0);
            s[1] = MULK(1, 1);
            s[2] = MULK(1, 2);
            s[3] = MULK(1, 3);
            ODD31(0);
            ODD31(1);
            ODD31(2);
            ODD31(3);
            O[k] = s[0];
            O[k + 1] = s[1];
            O[k + 2] = s[2];
            O[k + 3] = s[3];


        }


X265_PRAGMA_UNROLL(2)
        for (k = 0; k < 8; k += 4)
        {
            int32x4_t s[4];
            s[0] = MULK(2, 0);
            s[1] = MULK(2, 1);
            s[2] = MULK(2, 2);
            s[3] = MULK(2, 3);

            ODD15(0);
            ODD15(1);
            ODD15(2);
            ODD15(3);

            EO[k] = s[0];
            EO[k + 1] = s[1];
            EO[k + 2] = s[2];
            EO[k + 3] = s[3];
        }


        for (k = 0; k < 4; k += 4)
        {
            int32x4_t s[4];
            s[0] = MULK(4, 0);
            s[1] = MULK(4, 1);
            s[2] = MULK(4, 2);
            s[3] = MULK(4, 3);

            ODD7(0);
            ODD7(1);
            ODD7(2);
            ODD7(3);

            EEO[k] = s[0];
            EEO[k + 1] = s[1];
            EEO[k + 2] = s[2];
            EEO[k + 3] = s[3];
        }

X265_PRAGMA_UNROLL(2)
        for (k = 0; k < 2; k++)
        {
            int32x4_t s;
            s = MUL(8);
            EEEO[k] = FMA(24);
            s = MUL(0);
            EEEE[k] = FMA(16);
        }
        /* Combining even and odd terms at each hierarchy levels to calculate the final spatial domain vector */
        EEE[0] = vaddq_s32(EEEE[0], EEEO[0]);
        EEE[3] = vsubq_s32(EEEE[0], EEEO[0]);
        EEE[1] = vaddq_s32(EEEE[1], EEEO[1]);
        EEE[2] = vsubq_s32(EEEE[1], EEEO[1]);

X265_PRAGMA_UNROLL(4)
        for (k = 0; k < 4; k++)
        {
            EE[k] = vaddq_s32(EEE[k], EEO[k]);
            EE[k + 4] = vsubq_s32((EEE[3 - k]), (EEO[3 - k]));
        }

X265_PRAGMA_UNROLL(8)
        for (k = 0; k < 8; k++)
        {
            E[k] = vaddq_s32(EE[k], EO[k]);
            E[k + 8] = vsubq_s32((EE[7 - k]), (EO[7 - k]));
        }

        static const int32x4_t min = vdupq_n_s32(-32768);
        static const int32x4_t max = vdupq_n_s32(32767);



X265_PRAGMA_UNROLL(16)
        for (k = 0; k < 16; k++)
        {
            int32x4_t adde = vaddq_s32(vdupq_n_s32(add), E[k]);
            int32x4_t s = vaddq_s32(adde, O[k]);
            s = vshlq_s32(s, vdupq_n_s32(-shift));
            s = vmaxq_s32(s, min);
            s = vminq_s32(s, max);



            dst[k] = vmovn_s32(s);
            adde = vaddq_s32(vdupq_n_s32(add), (E[15 - k]));
            s  = vsubq_s32(adde, (O[15 - k]));
            s = vshlq_s32(s, vdupq_n_s32(-shift));
            s = vmaxq_s32(s, min);
            s = vminq_s32(s, max);

            dst[k + 16] = vmovn_s32(s);
        }


X265_PRAGMA_UNROLL(8)
        for (k = 0; k < 32; k += 4)
        {
            int16x4_t x0 = dst[k + 0];
            int16x4_t x1 = dst[k + 1];
            int16x4_t x2 = dst[k + 2];
            int16x4_t x3 = dst[k + 3];
            transpose_4x4x16(x0, x1, x2, x3);
            vst1_s16(&orig_dst[0 * 32 + k], x0);
            vst1_s16(&orig_dst[1 * 32 + k], x1);
            vst1_s16(&orig_dst[2 * 32 + k], x2);
            vst1_s16(&orig_dst[3 * 32 + k], x3);
        }
        orig_dst += 4 * 32;
        src += 4;
    }
#undef MUL
#undef FMA
#undef FMAK
#undef MULK
#undef ODD31
#undef ODD15
#undef ODD7

}


}

namespace X265_NS
{
// x265 private namespace
void dct8_neon(const int16_t *src, int16_t *dst, intptr_t srcStride)
{
    const int shift_pass1 = 2 + X265_DEPTH - 8;
    const int shift_pass2 = 9;

    ALIGN_VAR_32(int16_t, coef[8 * 8]);
    ALIGN_VAR_32(int16_t, block[8 * 8]);

    for (int i = 0; i < 8; i++)
    {
        memcpy(&block[i * 8], &src[i * srcStride], 8 * sizeof(int16_t));
    }

    partialButterfly8_neon<shift_pass1>(block, coef);
    partialButterfly8_neon<shift_pass2>(coef, dst);
}

void dct16_neon(const int16_t *src, int16_t *dst, intptr_t srcStride)
{
    const int shift_pass1 = 3 + X265_DEPTH - 8;
    const int shift_pass2 = 10;

    ALIGN_VAR_32(int16_t, coef[16 * 16]);
    ALIGN_VAR_32(int16_t, block[16 * 16]);

    for (int i = 0; i < 16; i++)
    {
        memcpy(&block[i * 16], &src[i * srcStride], 16 * sizeof(int16_t));
    }

    partialButterfly16_neon<shift_pass1>(block, coef);
    partialButterfly16_neon<shift_pass2>(coef, dst);
}

void dct32_neon(const int16_t *src, int16_t *dst, intptr_t srcStride)
{
    const int shift_pass1 = 4 + X265_DEPTH - 8;
    const int shift_pass2 = 11;

    ALIGN_VAR_32(int16_t, coef[32 * 32]);
    ALIGN_VAR_32(int16_t, block[32 * 32]);

    for (int i = 0; i < 32; i++)
    {
        memcpy(&block[i * 32], &src[i * srcStride], 32 * sizeof(int16_t));
    }

    partialButterfly32_neon<shift_pass1>(block, coef);
    partialButterfly32_neon<shift_pass2>(coef, dst);
}

void idct4_neon(const int16_t *src, int16_t *dst, intptr_t dstStride)
{
    const int shift_1st = 7;
    const int shift_2nd = 12 - (X265_DEPTH - 8);

    ALIGN_VAR_32(int16_t, coef[4 * 4]);
    ALIGN_VAR_32(int16_t, block[4 * 4]);

    partialButterflyInverse4(src, coef, shift_1st, 4); // Forward DST BY FAST ALGORITHM, block input, coef output
    partialButterflyInverse4(coef, block, shift_2nd, 4); // Forward DST BY FAST ALGORITHM, coef input, coeff output

    for (int i = 0; i < 4; i++)
    {
        memcpy(&dst[i * dstStride], &block[i * 4], 4 * sizeof(int16_t));
    }
}

void idct16_neon(const int16_t *src, int16_t *dst, intptr_t dstStride)
{
    const int shift_1st = 7;
    const int shift_2nd = 12 - (X265_DEPTH - 8);

    ALIGN_VAR_32(int16_t, coef[16 * 16]);
    ALIGN_VAR_32(int16_t, block[16 * 16]);

    partialButterflyInverse16_neon(src, coef, shift_1st, 16);
    partialButterflyInverse16_neon(coef, block, shift_2nd, 16);

    for (int i = 0; i < 16; i++)
    {
        memcpy(&dst[i * dstStride], &block[i * 16], 16 * sizeof(int16_t));
    }
}

void idct32_neon(const int16_t *src, int16_t *dst, intptr_t dstStride)
{
    const int shift_1st = 7;
    const int shift_2nd = 12 - (X265_DEPTH - 8);

    ALIGN_VAR_32(int16_t, coef[32 * 32]);
    ALIGN_VAR_32(int16_t, block[32 * 32]);

    partialButterflyInverse32_neon(src, coef, shift_1st, 32);
    partialButterflyInverse32_neon(coef, block, shift_2nd, 32);

    for (int i = 0; i < 32; i++)
    {
        memcpy(&dst[i * dstStride], &block[i * 32], 32 * sizeof(int16_t));
    }
}

void setupDCTPrimitives_neon(EncoderPrimitives &p)
{
    p.cu[BLOCK_4x4].nonPsyRdoQuant   = nonPsyRdoQuant_neon<2>;
    p.cu[BLOCK_8x8].nonPsyRdoQuant   = nonPsyRdoQuant_neon<3>;
    p.cu[BLOCK_16x16].nonPsyRdoQuant = nonPsyRdoQuant_neon<4>;
    p.cu[BLOCK_32x32].nonPsyRdoQuant = nonPsyRdoQuant_neon<5>;
    p.cu[BLOCK_4x4].psyRdoQuant = psyRdoQuant_neon<2>;
    p.cu[BLOCK_8x8].psyRdoQuant = psyRdoQuant_neon<3>;
    p.cu[BLOCK_16x16].psyRdoQuant = psyRdoQuant_neon<4>;
    p.cu[BLOCK_32x32].psyRdoQuant = psyRdoQuant_neon<5>;
    p.cu[BLOCK_8x8].dct   = dct8_neon;
    p.cu[BLOCK_16x16].dct = PFX(dct16_neon);
    p.cu[BLOCK_32x32].dct = dct32_neon;
    p.cu[BLOCK_4x4].idct   = idct4_neon;
    p.cu[BLOCK_16x16].idct = PFX(idct16_neon);
    p.cu[BLOCK_32x32].idct = idct32_neon;
    p.cu[BLOCK_4x4].count_nonzero = count_nonzero_neon<4>;
    p.cu[BLOCK_8x8].count_nonzero = count_nonzero_neon<8>;
    p.cu[BLOCK_16x16].count_nonzero = count_nonzero_neon<16>;
    p.cu[BLOCK_32x32].count_nonzero = count_nonzero_neon<32>;

    p.cu[BLOCK_4x4].copy_cnt   = copy_count_neon<4>;
    p.cu[BLOCK_8x8].copy_cnt   = copy_count_neon<8>;
    p.cu[BLOCK_16x16].copy_cnt = copy_count_neon<16>;
    p.cu[BLOCK_32x32].copy_cnt = copy_count_neon<32>;
    p.cu[BLOCK_4x4].psyRdoQuant_1p = nonPsyRdoQuant_neon<2>;
    p.cu[BLOCK_4x4].psyRdoQuant_2p = psyRdoQuant_neon<2>;
    p.cu[BLOCK_8x8].psyRdoQuant_1p = nonPsyRdoQuant_neon<3>;
    p.cu[BLOCK_8x8].psyRdoQuant_2p = psyRdoQuant_neon<3>;
    p.cu[BLOCK_16x16].psyRdoQuant_1p = nonPsyRdoQuant_neon<4>;
    p.cu[BLOCK_16x16].psyRdoQuant_2p = psyRdoQuant_neon<4>;
    p.cu[BLOCK_32x32].psyRdoQuant_1p = nonPsyRdoQuant_neon<5>;
    p.cu[BLOCK_32x32].psyRdoQuant_2p = psyRdoQuant_neon<5>;

    p.scanPosLast  = scanPosLast_opt;

}

};



#endif