File: intrapred-prim.cpp

package info (click to toggle)
x265 4.1-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 15,452 kB
  • sloc: asm: 187,063; cpp: 118,996; ansic: 741; makefile: 146; sh: 91; python: 11
file content (591 lines) | stat: -rw-r--r-- 21,781 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
#include "common.h"
#include "primitives.h"


#if HAVE_NEON
#include "arm64-utils.h"
#include <arm_neon.h>

using namespace X265_NS;

namespace
{


template<int tuSize>
void intraFilter_neon(const pixel* samples, pixel* filtered) /* 1:2:1 filtering of left and top reference samples */
{
    const int tuSize2 = tuSize << 1;
    pixel topLeft = samples[0], topLast = samples[tuSize2], leftLast = samples[tuSize2 + tuSize2];

    uint16x8_t two_vec = vdupq_n_u16(2);
#if !HIGH_BIT_DEPTH
    {
        for(int i = 0; i < tuSize2 + tuSize2; i+=8)
         {
            uint16x8_t sample1 = vmovl_u8(vld1_u8(&samples[i]));
            uint16x8_t sample2 = vmovl_u8(vld1_u8(&samples[i-1]));
            uint16x8_t sample3 = vmovl_u8(vld1_u8(&samples[i+1]));

            uint16x8_t result1 = vaddq_u16(vshlq_n_u16(sample1,1), sample2 );
            uint16x8_t result2 = vaddq_u16(sample3, two_vec);
            uint16x8_t result3 = vaddq_u16(result1,result2);
            vst1_u8(&filtered[i] , vmovn_u16(vshrq_n_u16(result3, 2)));
        }
    }
#else
    {
        for(int i = 0; i < tuSize2 + tuSize2; i+=8)
        {
            uint16x8_t sample1 = vld1q_u16(&samples[i]);
            uint16x8_t sample2 = vld1q_u16(&samples[i-1]);
            uint16x8_t sample3 = vld1q_u16(&samples[i+1]);

            uint16x8_t result1 = vaddq_u16(vshlq_n_u16(sample1,1), sample2 );
            uint16x8_t result2 = vaddq_u16(sample3, two_vec);
            uint16x8_t result3 = vaddq_u16(result1,result2);
            vst1q_u16(&filtered[i] , vshrq_n_u16(result3, 2));
        }
    }
#endif
    // filtering top
    filtered[tuSize2] = topLast;

    // filtering top-left
    filtered[0] = ((topLeft << 1) + samples[1] + samples[tuSize2 + 1] + 2) >> 2;

    // filtering left
    filtered[tuSize2 + 1] = ((samples[tuSize2 + 1] << 1) + topLeft + samples[tuSize2 + 2] + 2) >> 2;
    filtered[tuSize2 + tuSize2] = leftLast;
}

template<int width>
void intra_pred_ang_neon(pixel *dst, intptr_t dstStride, const pixel *srcPix0, int dirMode, int bFilter)
{
    int width2 = width << 1;
    // Flip the neighbours in the horizontal case.
    int horMode = dirMode < 18;
    pixel neighbourBuf[129];
    const pixel *srcPix = srcPix0;

    if (horMode)
    {
        neighbourBuf[0] = srcPix[0];
        //for (int i = 0; i < width << 1; i++)
        //{
        //    neighbourBuf[1 + i] = srcPix[width2 + 1 + i];
        //    neighbourBuf[width2 + 1 + i] = srcPix[1 + i];
        //}
        memcpy(&neighbourBuf[1], &srcPix[width2 + 1], sizeof(pixel) * (width << 1));
        memcpy(&neighbourBuf[width2 + 1], &srcPix[1], sizeof(pixel) * (width << 1));
        srcPix = neighbourBuf;
    }

    // Intra prediction angle and inverse angle tables.
    const int8_t angleTable[17] = { -32, -26, -21, -17, -13, -9, -5, -2, 0, 2, 5, 9, 13, 17, 21, 26, 32 };
    const int16_t invAngleTable[8] = { 4096, 1638, 910, 630, 482, 390, 315, 256 };

    // Get the prediction angle.
    int angleOffset = horMode ? 10 - dirMode : dirMode - 26;
    int angle = angleTable[8 + angleOffset];

    // Vertical Prediction.
    if (!angle)
    {
        for (int y = 0; y < width; y++)
        {
            memcpy(&dst[y * dstStride], srcPix + 1, sizeof(pixel)*width);
        }
        if (bFilter)
        {
            int topLeft = srcPix[0], top = srcPix[1];
            for (int y = 0; y < width; y++)
            {
                dst[y * dstStride] = x265_clip((int16_t)(top + ((srcPix[width2 + 1 + y] - topLeft) >> 1)));
            }
        }
    }
    else // Angular prediction.
    {
        // Get the reference pixels. The reference base is the first pixel to the top (neighbourBuf[1]).
        pixel refBuf[64];
        const pixel *ref;

        // Use the projected left neighbours and the top neighbours.
        if (angle < 0)
        {
            // Number of neighbours projected.
            int nbProjected = -((width * angle) >> 5) - 1;
            pixel *ref_pix = refBuf + nbProjected + 1;

            // Project the neighbours.
            int invAngle = invAngleTable[- angleOffset - 1];
            int invAngleSum = 128;
            for (int i = 0; i < nbProjected; i++)
            {
                invAngleSum += invAngle;
                ref_pix[- 2 - i] = srcPix[width2 + (invAngleSum >> 8)];
            }

            // Copy the top-left and top pixels.
            //for (int i = 0; i < width + 1; i++)
            //ref_pix[-1 + i] = srcPix[i];

            memcpy(&ref_pix[-1], srcPix, (width + 1)*sizeof(pixel));
            ref = ref_pix;
        }
        else // Use the top and top-right neighbours.
        {
            ref = srcPix + 1;
        }

        // Pass every row.
        int angleSum = 0;
        for (int y = 0; y < width; y++)
        {
            angleSum += angle;
            int offset = angleSum >> 5;
            int fraction = angleSum & 31;

            if (fraction) // Interpolate
            {
                if (width >= 8 && sizeof(pixel) == 1)
                {
                    // We have to cast to the 'real' type so that this block
                    // will compile for both low and high bitdepth.
                    const uint8_t *ref_u8 = (const uint8_t *)ref + offset;
                    uint8_t *dst_u8 = (uint8_t *)dst;

                    // f0 and f1 are unsigned (fraction is in range [0, 31]).
                    const uint8x8_t f0 = vdup_n_u8(32 - fraction);
                    const uint8x8_t f1 = vdup_n_u8(fraction);
                    for (int x = 0; x < width; x += 8)
                    {
                        uint8x8_t in0 = vld1_u8(ref_u8 + x);
                        uint8x8_t in1 = vld1_u8(ref_u8 + x + 1);
                        uint16x8_t lo = vmlal_u8(vdupq_n_u16(16), in0, f0);
                        lo = vmlal_u8(lo, in1, f1);
                        uint8x8_t res = vshrn_n_u16(lo, 5);
                        vst1_u8(dst_u8 + y * dstStride + x, res);
                    }
                }
                else if (width >= 4 && sizeof(pixel) == 2)
                {
                    // We have to cast to the 'real' type so that this block
                    // will compile for both low and high bitdepth.
                    const uint16_t *ref_u16 = (const uint16_t *)ref + offset;
                    uint16_t *dst_u16 = (uint16_t *)dst;

                    // f0 and f1 are unsigned (fraction is in range [0, 31]).
                    const uint16x4_t f0 = vdup_n_u16(32 - fraction);
                    const uint16x4_t f1 = vdup_n_u16(fraction);
                    for (int x = 0; x < width; x += 4)
                    {
                        uint16x4_t in0 = vld1_u16(ref_u16 + x);
                        uint16x4_t in1 = vld1_u16(ref_u16 + x + 1);
                        uint32x4_t lo = vmlal_u16(vdupq_n_u32(16), in0, f0);
                        lo = vmlal_u16(lo, in1, f1);
                        uint16x4_t res = vshrn_n_u32(lo, 5);
                        vst1_u16(dst_u16 + y * dstStride + x, res);
                    }
                }
                else
                {
                    for (int x = 0; x < width; x++)
                    {
                        dst[y * dstStride + x] = (pixel)(((32 - fraction) * ref[offset + x] + fraction * ref[offset + x + 1] + 16) >> 5);
                    }
                }
            }
            else // Copy.
            {
                memcpy(&dst[y * dstStride], &ref[offset], sizeof(pixel)*width);
            }
        }
    }

    // Flip for horizontal.
    if (horMode)
    {
        if (width == 8)
        {
            transpose8x8(dst, dst, dstStride, dstStride);
        }
        else if (width == 16)
        {
            transpose16x16(dst, dst, dstStride, dstStride);
        }
        else if (width == 32)
        {
            transpose32x32(dst, dst, dstStride, dstStride);
        }
        else
        {
            for (int y = 0; y < width - 1; y++)
            {
                for (int x = y + 1; x < width; x++)
                {
                    pixel tmp              = dst[y * dstStride + x];
                    dst[y * dstStride + x] = dst[x * dstStride + y];
                    dst[x * dstStride + y] = tmp;
                }
            }
        }
    }
}

#endif
template<int log2Size>
void all_angs_pred_neon(pixel *dest, pixel *refPix, pixel *filtPix, int bLuma)
{
    const int size = 1 << log2Size;
    for (int mode = 2; mode <= 34; mode++)
    {
        pixel *srcPix  = (g_intraFilterFlags[mode] & size ? filtPix  : refPix);
        pixel *out = dest + ((mode - 2) << (log2Size * 2));

        intra_pred_ang_neon<size>(out, size, srcPix, mode, bLuma);

        // Optimize code don't flip buffer
        bool modeHor = (mode < 18);

        // transpose the block if this is a horizontal mode
        if (modeHor)
        {
            if (size == 8)
            {
                transpose8x8(out, out, size, size);
            }
            else if (size == 16)
            {
                transpose16x16(out, out, size, size);
            }
            else if (size == 32)
            {
                transpose32x32(out, out, size, size);
            }
            else
            {
                for (int k = 0; k < size - 1; k++)
                {
                    for (int l = k + 1; l < size; l++)
                    {
                        pixel tmp         = out[k * size + l];
                        out[k * size + l] = out[l * size + k];
                        out[l * size + k] = tmp;
                    }
                }
            }
        }
    }
}

template<int log2Size>
void planar_pred_neon(pixel * dst, intptr_t dstStride, const pixel * srcPix, int /*dirMode*/, int /*bFilter*/)
{
    const int blkSize = 1 << log2Size;

    const pixel* above = srcPix + 1;
    const pixel* left = srcPix + (2 * blkSize + 1);

    switch (blkSize) {
    case 8:
    {
        const uint16_t log2SizePlusOne = log2Size + 1;
        uint16x8_t blkSizeVec = vdupq_n_u16(blkSize);
        uint16x8_t topRight = vdupq_n_u16(above[blkSize]);
        uint16_t bottomLeft = left[blkSize];
        uint16x8_t oneVec = vdupq_n_u16(1);
        uint16x8_t blkSizeSubOneVec = vdupq_n_u16(blkSize - 1);

        for (int y = 0; y < blkSize; y++) {
            // (blkSize - 1 - y)
            uint16x8_t vlkSizeYVec = vdupq_n_u16(blkSize - 1 - y);
            // (y + 1) * bottomLeft
            uint16x8_t bottomLeftYVec = vdupq_n_u16((y + 1) * bottomLeft);
            // left[y]
            uint16x8_t leftYVec = vdupq_n_u16(left[y]);

            for (int x = 0; x < blkSize; x += 8) {
                int idx = y * dstStride + x;
                uint16x8_t xvec = { (uint16_t)(x + 0), (uint16_t)(x + 1),
                                    (uint16_t)(x + 2), (uint16_t)(x + 3),
                                    (uint16_t)(x + 4), (uint16_t)(x + 5),
                                    (uint16_t)(x + 6), (uint16_t)(x + 7) };

                // (blkSize - 1 - y) * above[x]
                uint16x8_t aboveVec = { (uint16_t)(above[x + 0]),
                                        (uint16_t)(above[x + 1]),
                                        (uint16_t)(above[x + 2]),
                                        (uint16_t)(above[x + 3]),
                                        (uint16_t)(above[x + 4]),
                                        (uint16_t)(above[x + 5]),
                                        (uint16_t)(above[x + 6]),
                                        (uint16_t)(above[x + 7]) };

                aboveVec = vmulq_u16(aboveVec, vlkSizeYVec);

                // (blkSize - 1 - x) * left[y]
                uint16x8_t first = vsubq_u16(blkSizeSubOneVec, xvec);
                first = vmulq_u16(first, leftYVec);

                // (x + 1) * topRight
                uint16x8_t second = vaddq_u16(xvec, oneVec);
                second = vmulq_u16(second, topRight);

                uint16x8_t resVec = vaddq_u16(first, second);
                resVec = vaddq_u16(resVec, aboveVec);
                resVec = vaddq_u16(resVec, bottomLeftYVec);
                resVec = vaddq_u16(resVec, blkSizeVec);
                resVec = vshrq_n_u16(resVec, log2SizePlusOne);

                for (int i = 0; i < 8; i++)
                    dst[idx + i] = (pixel)resVec[i];
    }
}
        }
    break;
    case 4:
    case 32:
    case 16:
    {
        const uint32_t log2SizePlusOne = log2Size + 1;
        uint32x4_t blkSizeVec = vdupq_n_u32(blkSize);
        uint32x4_t topRight = vdupq_n_u32(above[blkSize]);
        uint32_t bottomLeft = left[blkSize];
        uint32x4_t oneVec = vdupq_n_u32(1);
        uint32x4_t blkSizeSubOneVec = vdupq_n_u32(blkSize - 1);

        for (int y = 0; y < blkSize; y++) {
            // (blkSize - 1 - y)
            uint32x4_t vlkSizeYVec = vdupq_n_u32(blkSize - 1 - y);
            // (y + 1) * bottomLeft
            uint32x4_t bottomLeftYVec = vdupq_n_u32((y + 1) * bottomLeft);
            // left[y]
            uint32x4_t leftYVec = vdupq_n_u32(left[y]);

            for (int x = 0; x < blkSize; x += 4) {
                int idx = y * dstStride + x;
                uint32x4_t xvec = { (uint32_t)(x + 0), (uint32_t)(x + 1),
                                    (uint32_t)(x + 2), (uint32_t)(x + 3) };

                // (blkSize - 1 - y) * above[x]
                uint32x4_t aboveVec = { (uint32_t)(above[x + 0]),
                                        (uint32_t)(above[x + 1]),
                                        (uint32_t)(above[x + 2]),
                                        (uint32_t)(above[x + 3]) };
                aboveVec = vmulq_u32(aboveVec, vlkSizeYVec);

                // (blkSize - 1 - x) * left[y]
                uint32x4_t first = vsubq_u32(blkSizeSubOneVec, xvec);
                first = vmulq_u32(first, leftYVec);

                // (x + 1) * topRight
                uint32x4_t second = vaddq_u32(xvec, oneVec);
                second = vmulq_u32(second, topRight);

                uint32x4_t resVec = vaddq_u32(first, second);
                resVec = vaddq_u32(resVec, aboveVec);
                resVec = vaddq_u32(resVec, bottomLeftYVec);
                resVec = vaddq_u32(resVec, blkSizeVec);
                resVec = vshrq_n_u32(resVec, log2SizePlusOne);

                for (int i = 0; i < 4; i++)
                    dst[idx + i] = (pixel)resVec[i];
            }
        }
    }
    break;
        }
}

static void dcPredFilter(const pixel* above, const pixel* left, pixel* dst, intptr_t dststride, int size)
{
    // boundary pixels processing
    pixel topLeft = (pixel)((above[0] + left[0] + 2 * dst[0] + 2) >> 2);
    pixel * pdst = dst;

    switch (size) {
    case 32:
    case 16:
    case 8:
    {
        uint16x8_t vconst_3 = vdupq_n_u16(3);
        uint16x8_t vconst_2 = vdupq_n_u16(2);
        for (int x = 0; x < size; x += 8) {
            uint16x8_t vabo = { (uint16_t)(above[x + 0]),
                                (uint16_t)(above[x + 1]),
                                (uint16_t)(above[x + 2]),
                                (uint16_t)(above[x + 3]),
                                (uint16_t)(above[x + 4]),
                                (uint16_t)(above[x + 5]),
                                (uint16_t)(above[x + 6]),
                                (uint16_t)(above[x + 7]) };

            uint16x8_t vdst = { (uint16_t)(dst[x + 0]),
                                (uint16_t)(dst[x + 1]),
                                (uint16_t)(dst[x + 2]),
                                (uint16_t)(dst[x + 3]),
                                (uint16_t)(dst[x + 4]),
                                (uint16_t)(dst[x + 5]),
                                (uint16_t)(dst[x + 6]),
                                (uint16_t)(dst[x + 7]) };
            //  dst[x] = (pixel)((above[x] +  3 * dst[x] + 2) >> 2);
            vdst = vmulq_u16(vdst, vconst_3);
            vdst = vaddq_u16(vdst, vabo);
            vdst = vaddq_u16(vdst, vconst_2);
            vdst = vshrq_n_u16(vdst, 2);
            for (int i = 0; i < 8; i++)
                dst[x + i] = (pixel)(vdst[i]);
        }
        dst += dststride;
        for (int y = 1; y < size; y++)
        {
            *dst = (pixel)((left[y] + 3 * *dst + 2) >> 2);
            dst += dststride;
        }
    }
    break;
    case 4:
    {
        uint16x4_t vconst_3 = vdup_n_u16(3);
        uint16x4_t vconst_2 = vdup_n_u16(2);
        uint16x4_t vabo = { (uint16_t)(above[0]),
                            (uint16_t)(above[1]),
                            (uint16_t)(above[2]),
                            (uint16_t)(above[3]) };
        uint16x4_t vdstx = { (uint16_t)(dst[0]),
                             (uint16_t)(dst[1]),
                             (uint16_t)(dst[2]),
                             (uint16_t)(dst[3]) };
        vdstx = vmul_u16(vdstx, vconst_3);
        vdstx = vadd_u16(vdstx, vabo);
        vdstx = vadd_u16(vdstx, vconst_2);
        vdstx = vshr_n_u16(vdstx, 2);
        for (int i = 0; i < 4; i++)
            dst[i] = (pixel)(vdstx[i]);

        dst += dststride;
        for (int y = 1; y < size; y++)
        {
            *dst = (pixel)((left[y] + 3 * *dst + 2) >> 2);
            dst += dststride;
        }
    }
    break;
    }

    *pdst = topLeft;
}

template<int width>
void intra_pred_dc_neon(pixel* dst, intptr_t dstStride, const pixel* srcPix, int /*dirMode*/, int bFilter)
{
    int k, l;
    int dcVal = width;

    switch (width) {
    case 32:
    case 16:
    case 8:
    {
        for (int i = 0; i < width; i += 8) {
            uint16x8_t spa = { (uint16_t)(srcPix[i + 1]),
                               (uint16_t)(srcPix[i + 2]),
                               (uint16_t)(srcPix[i + 3]),
                               (uint16_t)(srcPix[i + 4]),
                               (uint16_t)(srcPix[i + 5]),
                               (uint16_t)(srcPix[i + 6]),
                               (uint16_t)(srcPix[i + 7]),
                               (uint16_t)(srcPix[i + 8]) };
            uint16x8_t spb = { (uint16_t)(srcPix[2 * width + i + 1]),
                               (uint16_t)(srcPix[2 * width + i + 2]),
                               (uint16_t)(srcPix[2 * width + i + 3]),
                               (uint16_t)(srcPix[2 * width + i + 4]),
                               (uint16_t)(srcPix[2 * width + i + 5]),
                               (uint16_t)(srcPix[2 * width + i + 6]),
                               (uint16_t)(srcPix[2 * width + i + 7]),
                               (uint16_t)(srcPix[2 * width + i + 8]) };
            uint16x8_t vsp = vaddq_u16(spa, spb);
            dcVal += vaddlvq_u16(vsp);
        }

        dcVal = dcVal / (width + width);
        for (k = 0; k < width; k++)
            for (l = 0; l < width; l += 8) {
                uint16x8_t vdv = vdupq_n_u16((pixel)dcVal);
                for (int n = 0; n < 8; n++)
                    dst[k * dstStride + l + n] = (pixel)(vdv[n]);
            }
    }
    break;
    case 4:
    {
        uint16x4_t spa = { (uint16_t)(srcPix[1]), (uint16_t)(srcPix[2]),
                           (uint16_t)(srcPix[3]), (uint16_t)(srcPix[4]) };
        uint16x4_t spb = { (uint16_t)(srcPix[2 * width + 1]),
                           (uint16_t)(srcPix[2 * width + 2]),
                           (uint16_t)(srcPix[2 * width + 3]),
                           (uint16_t)(srcPix[2 * width + 4]) };
        uint16x4_t vsp = vadd_u16(spa, spb);
        dcVal += vaddlv_u16(vsp);

        dcVal = dcVal / (width + width);
        for (k = 0; k < width; k++) {
            uint16x4_t vdv = vdup_n_u16((pixel)dcVal);
            for (int n = 0; n < 4; n++)
                dst[k * dstStride + n] = (pixel)(vdv[n]);
        }
    }
    break;
    }

    if (bFilter)
        dcPredFilter(srcPix + 1, srcPix + (2 * width + 1), dst, dstStride, width);
}
}

namespace X265_NS
{
// x265 private namespace
extern "C" void PFX(intra_pred_planar8_neon)(pixel* dst, intptr_t dstStride, const pixel* srcPix, int dirMode, int bFilter);
extern "C" void PFX(intra_pred_planar16_neon)(pixel* dst, intptr_t dstStride, const pixel* srcPix, int dirMode, int bFilter);

void setupIntraPrimitives_neon(EncoderPrimitives &p)
{
    p.cu[BLOCK_4x4].intra_filter = intraFilter_neon<4>;
    p.cu[BLOCK_8x8].intra_filter = intraFilter_neon<8>;
    p.cu[BLOCK_16x16].intra_filter = intraFilter_neon<16>;
    p.cu[BLOCK_32x32].intra_filter = intraFilter_neon<32>;

    for (int i = 2; i < NUM_INTRA_MODE; i++)
    {
        p.cu[BLOCK_8x8].intra_pred[i] = intra_pred_ang_neon<8>;
        p.cu[BLOCK_16x16].intra_pred[i] = intra_pred_ang_neon<16>;
        p.cu[BLOCK_32x32].intra_pred[i] = intra_pred_ang_neon<32>;
    }
    p.cu[BLOCK_4x4].intra_pred[2] = intra_pred_ang_neon<4>;
    p.cu[BLOCK_4x4].intra_pred[10] = intra_pred_ang_neon<4>;
    p.cu[BLOCK_4x4].intra_pred[18] = intra_pred_ang_neon<4>;
    p.cu[BLOCK_4x4].intra_pred[26] = intra_pred_ang_neon<4>;
    p.cu[BLOCK_4x4].intra_pred[34] = intra_pred_ang_neon<4>;

    p.cu[BLOCK_4x4].intra_pred_allangs = all_angs_pred_neon<2>;
    p.cu[BLOCK_8x8].intra_pred_allangs = all_angs_pred_neon<3>;
    p.cu[BLOCK_16x16].intra_pred_allangs = all_angs_pred_neon<4>;
    p.cu[BLOCK_32x32].intra_pred_allangs = all_angs_pred_neon<5>;

#if !HIGH_BIT_DEPTH
    p.cu[BLOCK_8x8].intra_pred[PLANAR_IDX] = PFX(intra_pred_planar8_neon);
    p.cu[BLOCK_16x16].intra_pred[PLANAR_IDX] = PFX(intra_pred_planar16_neon);
#endif

    p.cu[BLOCK_4x4].intra_pred[DC_IDX] = intra_pred_dc_neon<4>;
    p.cu[BLOCK_8x8].intra_pred[DC_IDX] = intra_pred_dc_neon<8>;
    p.cu[BLOCK_16x16].intra_pred[DC_IDX] = intra_pred_dc_neon<16>;
    p.cu[BLOCK_32x32].intra_pred[DC_IDX] = intra_pred_dc_neon<32>;
}
}