1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
|
/*****************************************************************************
* Copyright (C) 2024 MulticoreWare, Inc
*
* Authors: Hari Limaye <hari.limaye@arm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
*
* This program is also available under a commercial proprietary license.
* For more information, contact us at license @ x265.com.
*****************************************************************************/
#include "sao-prim.h"
#include "sao.h"
#include <arm_neon.h>
// Predicate mask indices.
static const int8_t quad_reg_byte_indices[16] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
};
static inline int8x16_t mask_inactive_elems(const int rem, int8x16_t edge_type)
{
// Compute a predicate mask where the bits of an element are 0 if the index
// is less than the remainder (active), and 1 otherwise.
const int8x16_t indices = vld1q_s8(quad_reg_byte_indices);
int8x16_t pred = vreinterpretq_s8_u8(vcgeq_s8(indices, vdupq_n_s8(rem)));
// Use predicate mask to shift "unused lanes" outside of range [-2, 2]
pred = vshlq_n_s8(pred, 3);
return veorq_s8(edge_type, pred);
}
/*
* Compute Edge Offset statistics (count and stats).
* To save some instructions compute count and stats as negative values - since
* output of Neon comparison instructions for a matched condition is all 1s (-1).
*/
static inline void compute_eo_stats(const int8x16_t edge_type,
const int16_t *diff, int16x8_t *count,
int32x4_t *stats)
{
// Create a mask for each edge type.
int8x16_t mask0 = vreinterpretq_s8_u8(vceqq_s8(edge_type, vdupq_n_s8(-2)));
int8x16_t mask1 = vreinterpretq_s8_u8(vceqq_s8(edge_type, vdupq_n_s8(-1)));
int8x16_t mask2 = vreinterpretq_s8_u8(vceqq_s8(edge_type, vdupq_n_s8(0)));
int8x16_t mask3 = vreinterpretq_s8_u8(vceqq_s8(edge_type, vdupq_n_s8(1)));
int8x16_t mask4 = vreinterpretq_s8_u8(vceqq_s8(edge_type, vdupq_n_s8(2)));
// Compute negative counts for each edge type.
count[0] = vpadalq_s8(count[0], mask0);
count[1] = vpadalq_s8(count[1], mask1);
count[2] = vpadalq_s8(count[2], mask2);
count[3] = vpadalq_s8(count[3], mask3);
count[4] = vpadalq_s8(count[4], mask4);
// Widen the masks to 16-bit.
int16x8_t mask0_lo = vreinterpretq_s16_s8(vzip1q_s8(mask0, mask0));
int16x8_t mask0_hi = vreinterpretq_s16_s8(vzip2q_s8(mask0, mask0));
int16x8_t mask1_lo = vreinterpretq_s16_s8(vzip1q_s8(mask1, mask1));
int16x8_t mask1_hi = vreinterpretq_s16_s8(vzip2q_s8(mask1, mask1));
int16x8_t mask2_lo = vreinterpretq_s16_s8(vzip1q_s8(mask2, mask2));
int16x8_t mask2_hi = vreinterpretq_s16_s8(vzip2q_s8(mask2, mask2));
int16x8_t mask3_lo = vreinterpretq_s16_s8(vzip1q_s8(mask3, mask3));
int16x8_t mask3_hi = vreinterpretq_s16_s8(vzip2q_s8(mask3, mask3));
int16x8_t mask4_lo = vreinterpretq_s16_s8(vzip1q_s8(mask4, mask4));
int16x8_t mask4_hi = vreinterpretq_s16_s8(vzip2q_s8(mask4, mask4));
int16x8_t diff_lo = vld1q_s16(diff);
int16x8_t diff_hi = vld1q_s16(diff + 8);
// Compute negative stats for each edge type.
int16x8_t stats0 = vmulq_s16(diff_lo, mask0_lo);
int16x8_t stats1 = vmulq_s16(diff_lo, mask1_lo);
int16x8_t stats2 = vmulq_s16(diff_lo, mask2_lo);
int16x8_t stats3 = vmulq_s16(diff_lo, mask3_lo);
int16x8_t stats4 = vmulq_s16(diff_lo, mask4_lo);
stats0 = vmlaq_s16(stats0, diff_hi, mask0_hi);
stats1 = vmlaq_s16(stats1, diff_hi, mask1_hi);
stats2 = vmlaq_s16(stats2, diff_hi, mask2_hi);
stats3 = vmlaq_s16(stats3, diff_hi, mask3_hi);
stats4 = vmlaq_s16(stats4, diff_hi, mask4_hi);
stats[0] = vpadalq_s16(stats[0], stats0);
stats[1] = vpadalq_s16(stats[1], stats1);
stats[2] = vpadalq_s16(stats[2], stats2);
stats[3] = vpadalq_s16(stats[3], stats3);
stats[4] = vpadalq_s16(stats[4], stats4);
}
/*
* Reduce and store Edge Offset statistics (count and stats).
*/
static inline void reduce_eo_stats(int32x4_t *vstats, int16x8_t *vcount,
int32_t *stats, int32_t *count)
{
// s_eoTable maps edge types to memory in order: {2, 0, 1, 3, 4}.
int16x8_t c01 = vpaddq_s16(vcount[2], vcount[0]);
int16x8_t c23 = vpaddq_s16(vcount[1], vcount[3]);
int16x8_t c0123 = vpaddq_s16(c01, c23);
// Subtract from current count, as we calculate the negation.
vst1q_s32(count, vsubq_s32(vld1q_s32(count), vpaddlq_s16(c0123)));
count[4] -= vaddvq_s16(vcount[4]);
int32x4_t s01 = vpaddq_s32(vstats[2], vstats[0]);
int32x4_t s23 = vpaddq_s32(vstats[1], vstats[3]);
int32x4_t s0123 = vpaddq_s32(s01, s23);
// Subtract from current stats, as we calculate the negation.
vst1q_s32(stats, vsubq_s32(vld1q_s32(stats), s0123));
stats[4] -= vaddvq_s32(vstats[4]);
}
namespace X265_NS {
void saoCuStatsBO_neon(const int16_t *diff, const pixel *rec, intptr_t stride,
int endX, int endY, int32_t *stats, int32_t *count)
{
#if HIGH_BIT_DEPTH
const int n_elem = 4;
const int elem_width = 16;
#else
const int n_elem = 8;
const int elem_width = 8;
#endif
// Additional temporary buffer for accumulation.
int32_t stats_tmp[32] = { 0 };
int32_t count_tmp[32] = { 0 };
// Byte-addressable pointers to buffers, to optimise address calculation.
uint8_t *stats_b[2] = {
reinterpret_cast<uint8_t *>(stats),
reinterpret_cast<uint8_t *>(stats_tmp),
};
uint8_t *count_b[2] = {
reinterpret_cast<uint8_t *>(count),
reinterpret_cast<uint8_t *>(count_tmp),
};
// Combine shift for index calculation with shift for address calculation.
const int right_shift = X265_DEPTH - X265_NS::SAO::SAO_BO_BITS;
const int left_shift = 2;
const int shift = right_shift - left_shift;
// Mask out bits 7, 1 & 0 to account for combination of shifts.
const int mask = 0x7c;
// Compute statistics into temporary buffers.
for (int y = 0; y < endY; y++)
{
int x = 0;
for (; x + n_elem < endX; x += n_elem)
{
uint64_t class_idx_64 =
*reinterpret_cast<const uint64_t *>(rec + x) >> shift;
for (int i = 0; i < n_elem; ++i)
{
const int idx = i & 1;
const int off = (class_idx_64 >> (i * elem_width)) & mask;
*reinterpret_cast<uint32_t*>(stats_b[idx] + off) += diff[x + i];
*reinterpret_cast<uint32_t*>(count_b[idx] + off) += 1;
}
}
if (x < endX)
{
uint64_t class_idx_64 =
*reinterpret_cast<const uint64_t *>(rec + x) >> shift;
for (int i = 0; (i + x) < endX; ++i)
{
const int idx = i & 1;
const int off = (class_idx_64 >> (i * elem_width)) & mask;
*reinterpret_cast<uint32_t*>(stats_b[idx] + off) += diff[x + i];
*reinterpret_cast<uint32_t*>(count_b[idx] + off) += 1;
}
}
diff += MAX_CU_SIZE;
rec += stride;
}
// Reduce temporary buffers to destination using Neon.
for (int i = 0; i < 32; i += 4)
{
int32x4_t s0 = vld1q_s32(stats_tmp + i);
int32x4_t s1 = vld1q_s32(stats + i);
vst1q_s32(stats + i, vaddq_s32(s0, s1));
int32x4_t c0 = vld1q_s32(count_tmp + i);
int32x4_t c1 = vld1q_s32(count + i);
vst1q_s32(count + i, vaddq_s32(c0, c1));
}
}
void saoCuStatsE0_neon(const int16_t *diff, const pixel *rec, intptr_t stride,
int endX, int endY, int32_t *stats, int32_t *count)
{
// Separate buffers for each edge type, so that we can vectorise.
int16x8_t tmp_count[5] = { vdupq_n_s16(0), vdupq_n_s16(0), vdupq_n_s16(0),
vdupq_n_s16(0), vdupq_n_s16(0) };
int32x4_t tmp_stats[5] = { vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0),
vdupq_n_s32(0), vdupq_n_s32(0) };
for (int y = 0; y < endY; y++)
{
// Calculate negated sign_left(x) directly, to save negation when
// reusing sign_right(x) as sign_left(x + 1).
int8x16_t neg_sign_left = vdupq_n_s8(x265_signOf(rec[-1] - rec[0]));
for (int x = 0; x < endX; x += 16)
{
int8x16_t sign_right = signOf_neon(rec + x, rec + x + 1);
// neg_sign_left(x) = sign_right(x + 1), reusing one from previous
// iteration.
neg_sign_left = vextq_s8(neg_sign_left, sign_right, 15);
// Subtract instead of add, as sign_left is negated.
int8x16_t edge_type = vsubq_s8(sign_right, neg_sign_left);
// For reuse in the next iteration.
neg_sign_left = sign_right;
edge_type = mask_inactive_elems(endX - x, edge_type);
compute_eo_stats(edge_type, diff + x, tmp_count, tmp_stats);
}
diff += MAX_CU_SIZE;
rec += stride;
}
reduce_eo_stats(tmp_stats, tmp_count, stats, count);
}
void saoCuStatsE1_neon(const int16_t *diff, const pixel *rec, intptr_t stride,
int8_t *upBuff1, int endX, int endY, int32_t *stats,
int32_t *count)
{
// Separate buffers for each edge type, so that we can vectorise.
int16x8_t tmp_count[5] = { vdupq_n_s16(0), vdupq_n_s16(0), vdupq_n_s16(0),
vdupq_n_s16(0), vdupq_n_s16(0) };
int32x4_t tmp_stats[5] = { vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0),
vdupq_n_s32(0), vdupq_n_s32(0) };
// Negate upBuff1 (sign_up), so we can subtract and save repeated negations.
for (int x = 0; x < endX; x += 16)
{
vst1q_s8(upBuff1 + x, vnegq_s8(vld1q_s8(upBuff1 + x)));
}
for (int y = 0; y < endY; y++)
{
for (int x = 0; x < endX; x += 16)
{
int8x16_t sign_up = vld1q_s8(upBuff1 + x);
int8x16_t sign_down = signOf_neon(rec + x, rec + x + stride);
// Subtract instead of add, as sign_up is negated.
int8x16_t edge_type = vsubq_s8(sign_down, sign_up);
// For reuse in the next iteration.
vst1q_s8(upBuff1 + x, sign_down);
edge_type = mask_inactive_elems(endX - x, edge_type);
compute_eo_stats(edge_type, diff + x, tmp_count, tmp_stats);
}
diff += MAX_CU_SIZE;
rec += stride;
}
reduce_eo_stats(tmp_stats, tmp_count, stats, count);
}
void saoCuStatsE2_neon(const int16_t *diff, const pixel *rec, intptr_t stride,
int8_t *upBuff1, int8_t *upBufft, int endX, int endY,
int32_t *stats, int32_t *count)
{
// Separate buffers for each edge type, so that we can vectorise.
int16x8_t tmp_count[5] = { vdupq_n_s16(0), vdupq_n_s16(0), vdupq_n_s16(0),
vdupq_n_s16(0), vdupq_n_s16(0) };
int32x4_t tmp_stats[5] = { vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0),
vdupq_n_s32(0), vdupq_n_s32(0) };
// Negate upBuff1 (sign_up) so we can subtract and save repeated negations.
for (int x = 0; x < endX; x += 16)
{
vst1q_s8(upBuff1 + x, vnegq_s8(vld1q_s8(upBuff1 + x)));
}
for (int y = 0; y < endY; y++)
{
upBufft[0] = x265_signOf(rec[-1] - rec[stride]);
for (int x = 0; x < endX; x += 16)
{
int8x16_t sign_up = vld1q_s8(upBuff1 + x);
int8x16_t sign_down = signOf_neon(rec + x, rec + x + stride + 1);
// Subtract instead of add, as sign_up is negated.
int8x16_t edge_type = vsubq_s8(sign_down, sign_up);
// For reuse in the next iteration.
vst1q_s8(upBufft + x + 1, sign_down);
edge_type = mask_inactive_elems(endX - x, edge_type);
compute_eo_stats(edge_type, diff + x, tmp_count, tmp_stats);
}
std::swap(upBuff1, upBufft);
rec += stride;
diff += MAX_CU_SIZE;
}
reduce_eo_stats(tmp_stats, tmp_count, stats, count);
}
void saoCuStatsE3_neon(const int16_t *diff, const pixel *rec, intptr_t stride,
int8_t *upBuff1, int endX, int endY, int32_t *stats,
int32_t *count)
{
// Separate buffers for each edge type, so that we can vectorise.
int16x8_t tmp_count[5] = { vdupq_n_s16(0), vdupq_n_s16(0), vdupq_n_s16(0),
vdupq_n_s16(0), vdupq_n_s16(0) };
int32x4_t tmp_stats[5] = { vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0),
vdupq_n_s32(0), vdupq_n_s32(0) };
// Negate upBuff1 (sign_up) so we can subtract and save repeated negations.
for (int x = 0; x < endX; x += 16)
{
vst1q_s8(upBuff1 + x, vnegq_s8(vld1q_s8(upBuff1 + x)));
}
for (int y = 0; y < endY; y++)
{
for (int x = 0; x < endX; x += 16)
{
int8x16_t sign_up = vld1q_s8(upBuff1 + x);
int8x16_t sign_down = signOf_neon(rec + x, rec + x + stride - 1);
// subtraction instead of addition, as sign_up is negated.
int8x16_t edge_type = vsubq_s8(sign_down, sign_up);
// For reuse in the next iteration.
vst1q_s8(upBuff1 + x - 1, sign_down);
edge_type = mask_inactive_elems(endX - x, edge_type);
compute_eo_stats(edge_type, diff + x, tmp_count, tmp_stats);
}
upBuff1[endX - 1] = x265_signOf(rec[endX] - rec[endX - 1 + stride]);
rec += stride;
diff += MAX_CU_SIZE;
}
reduce_eo_stats(tmp_stats, tmp_count, stats, count);
}
void setupSaoPrimitives_neon(EncoderPrimitives &p)
{
p.saoCuStatsBO = saoCuStatsBO_neon;
p.saoCuStatsE0 = saoCuStatsE0_neon;
p.saoCuStatsE1 = saoCuStatsE1_neon;
p.saoCuStatsE2 = saoCuStatsE2_neon;
p.saoCuStatsE3 = saoCuStatsE3_neon;
}
} // namespace X265_NS
|