File: primitives.h

package info (click to toggle)
x265 4.1-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 15,452 kB
  • sloc: asm: 187,063; cpp: 118,996; ansic: 741; makefile: 146; sh: 91; python: 11
file content (496 lines) | stat: -rw-r--r-- 25,130 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
/*****************************************************************************
 * Copyright (C) 2013-2020 MulticoreWare, Inc
 *
 * Authors: Steve Borho <steve@borho.org>
 *          Mandar Gurav <mandar@multicorewareinc.com>
 *          Deepthi Devaki Akkoorath <deepthidevaki@multicorewareinc.com>
 *          Mahesh Pittala <mahesh@multicorewareinc.com>
 *          Rajesh Paulraj <rajesh@multicorewareinc.com>
 *          Praveen Kumar Tiwari <praveen@multicorewareinc.com>
 *          Min Chen <chenm003@163.com>
 *          Hongbin Liu<liuhongbin1@huawei.com>
 *          Yimeng Su <yimeng.su@huawei.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02111, USA.
 *
 * This program is also available under a commercial proprietary license.
 * For more information, contact us at license @ x265.com.
 *****************************************************************************/

#ifndef X265_PRIMITIVES_H
#define X265_PRIMITIVES_H

#include "common.h"
#include "cpu.h"

namespace X265_NS {
// x265 private namespace

enum LumaPU
{
    // Square (the first 5 PUs match the block sizes)
    LUMA_4x4,   LUMA_8x8,   LUMA_16x16, LUMA_32x32, LUMA_64x64,
    // Rectangular
    LUMA_8x4,   LUMA_4x8,
    LUMA_16x8,  LUMA_8x16,
    LUMA_32x16, LUMA_16x32,
    LUMA_64x32, LUMA_32x64,
    // Asymmetrical (0.75, 0.25)
    LUMA_16x12, LUMA_12x16, LUMA_16x4,  LUMA_4x16,
    LUMA_32x24, LUMA_24x32, LUMA_32x8,  LUMA_8x32,
    LUMA_64x48, LUMA_48x64, LUMA_64x16, LUMA_16x64,
    NUM_PU_SIZES
};

enum LumaCU // can be indexed using log2n(width)-2
{
    BLOCK_4x4,
    BLOCK_8x8,
    BLOCK_16x16,
    BLOCK_32x32,
    BLOCK_64x64,
    NUM_CU_SIZES
};

enum AlignPrimitive
{
    NONALIGNED,
    ALIGNED,
    NUM_ALIGNMENT_TYPES
};

enum { NUM_TR_SIZE = 4 }; // TU are 4x4, 8x8, 16x16, and 32x32


/* Chroma partition sizes. These enums are only a convenience for indexing into
 * the chroma primitive arrays when instantiating macros or templates. The
 * chroma function tables should always be indexed by a LumaPU enum when used. */
enum ChromaPU420
{
    CHROMA_420_2x2,   CHROMA_420_4x4,   CHROMA_420_8x8,  CHROMA_420_16x16, CHROMA_420_32x32,
    CHROMA_420_4x2,   CHROMA_420_2x4,
    CHROMA_420_8x4,   CHROMA_420_4x8,
    CHROMA_420_16x8,  CHROMA_420_8x16,
    CHROMA_420_32x16, CHROMA_420_16x32,
    CHROMA_420_8x6,   CHROMA_420_6x8,   CHROMA_420_8x2,  CHROMA_420_2x8,
    CHROMA_420_16x12, CHROMA_420_12x16, CHROMA_420_16x4, CHROMA_420_4x16,
    CHROMA_420_32x24, CHROMA_420_24x32, CHROMA_420_32x8, CHROMA_420_8x32,
};

enum ChromaCU420
{
    BLOCK_420_2x2,
    BLOCK_420_4x4,
    BLOCK_420_8x8,
    BLOCK_420_16x16,
    BLOCK_420_32x32
};

enum ChromaPU422
{
    CHROMA_422_2x4,   CHROMA_422_4x8,   CHROMA_422_8x16,  CHROMA_422_16x32, CHROMA_422_32x64,
    CHROMA_422_4x4,   CHROMA_422_2x8,
    CHROMA_422_8x8,   CHROMA_422_4x16,
    CHROMA_422_16x16, CHROMA_422_8x32,
    CHROMA_422_32x32, CHROMA_422_16x64,
    CHROMA_422_8x12,  CHROMA_422_6x16,  CHROMA_422_8x4,   CHROMA_422_2x16,
    CHROMA_422_16x24, CHROMA_422_12x32, CHROMA_422_16x8,  CHROMA_422_4x32,
    CHROMA_422_32x48, CHROMA_422_24x64, CHROMA_422_32x16, CHROMA_422_8x64,
};

enum ChromaCU422
{
    BLOCK_422_2x4,
    BLOCK_422_4x8,
    BLOCK_422_8x16,
    BLOCK_422_16x32,
    BLOCK_422_32x64
};

enum IntegralSize
{
    INTEGRAL_4,
    INTEGRAL_8,
    INTEGRAL_12,
    INTEGRAL_16,
    INTEGRAL_24,
    INTEGRAL_32,
    NUM_INTEGRAL_SIZE
};

typedef int  (*pixelcmp_t)(const pixel* fenc, intptr_t fencstride, const pixel* fref, intptr_t frefstride); // fenc is aligned
typedef int  (*pixelcmp_ss_t)(const int16_t* fenc, intptr_t fencstride, const int16_t* fref, intptr_t frefstride);
typedef sse_t (*pixel_sse_t)(const pixel* fenc, intptr_t fencstride, const pixel* fref, intptr_t frefstride); // fenc is aligned
typedef sse_t (*pixel_sse_ss_t)(const int16_t* fenc, intptr_t fencstride, const int16_t* fref, intptr_t frefstride);
typedef sse_t (*pixel_ssd_s_t)(const int16_t* fenc, intptr_t fencstride);
typedef int(*pixelcmp_ads_t)(int encDC[], uint32_t *sums, int delta, uint16_t *costMvX, int16_t *mvs, int width, int thresh);
typedef void (*pixelcmp_x4_t)(const pixel* fenc, const pixel* fref0, const pixel* fref1, const pixel* fref2, const pixel* fref3, intptr_t frefstride, int32_t* res);
typedef void (*pixelcmp_x3_t)(const pixel* fenc, const pixel* fref0, const pixel* fref1, const pixel* fref2, intptr_t frefstride, int32_t* res);
typedef void (*blockfill_s_t)(int16_t* dst, intptr_t dstride, int16_t val);

typedef void (*intra_pred_t)(pixel* dst, intptr_t dstStride, const pixel *srcPix, int dirMode, int bFilter);
typedef void (*intra_allangs_t)(pixel *dst, pixel *refPix, pixel *filtPix, int bLuma);
typedef void (*intra_filter_t)(const pixel* references, pixel* filtered);

typedef void (*cpy2Dto1D_shl_t)(int16_t* dst, const int16_t* src, intptr_t srcStride, int shift);
typedef void (*cpy2Dto1D_shr_t)(int16_t* dst, const int16_t* src, intptr_t srcStride, int shift);
typedef void (*cpy1Dto2D_shl_t)(int16_t* dst, const int16_t* src, intptr_t dstStride, int shift);
typedef void (*cpy1Dto2D_shr_t)(int16_t* dst, const int16_t* src, intptr_t dstStride, int shift);
typedef uint32_t (*copy_cnt_t)(int16_t* coeff, const int16_t* residual, intptr_t resiStride);

typedef void (*dct_t)(const int16_t* src, int16_t* dst, intptr_t srcStride);
typedef void (*idct_t)(const int16_t* src, int16_t* dst, intptr_t dstStride);
typedef void (*denoiseDct_t)(int16_t* dctCoef, uint32_t* resSum, const uint16_t* offset, int numCoeff);

typedef void (*calcresidual_t)(const pixel* fenc, const pixel* pred, int16_t* residual, intptr_t stride);
typedef void (*transpose_t)(pixel* dst, const pixel* src, intptr_t stride);
typedef uint32_t (*quant_t)(const int16_t* coef, const int32_t* quantCoeff, int32_t* deltaU, int16_t* qCoef, int qBits, int add, int numCoeff);
typedef uint32_t (*nquant_t)(const int16_t* coef, const int32_t* quantCoeff, int16_t* qCoef, int qBits, int add, int numCoeff);
typedef void (*dequant_scaling_t)(const int16_t* src, const int32_t* dequantCoef, int16_t* dst, int num, int mcqp_miper, int shift);
typedef void (*dequant_normal_t)(const int16_t* quantCoef, int16_t* coef, int num, int scale, int shift);
typedef int(*count_nonzero_t)(const int16_t* quantCoeff);
typedef void (*weightp_pp_t)(const pixel* src, pixel* dst, intptr_t stride, int width, int height, int w0, int round, int shift, int offset);
typedef void (*weightp_sp_t)(const int16_t* src, pixel* dst, intptr_t srcStride, intptr_t dstStride, int width, int height, int w0, int round, int shift, int offset);
typedef void (*scale1D_t)(pixel* dst, const pixel* src);
typedef void (*scale2D_t)(pixel* dst, const pixel* src, intptr_t stride);
typedef void (*downscale_t)(const pixel* src0, pixel* dstf, pixel* dsth, pixel* dstv, pixel* dstc,
                            intptr_t src_stride, intptr_t dst_stride, int width, int height);
typedef void (*extendCURowBorder_t)(pixel* txt, intptr_t stride, int width, int height, int marginX);
typedef void (*ssim_4x4x2_core_t)(const pixel* pix1, intptr_t stride1, const pixel* pix2, intptr_t stride2, int sums[2][4]);
typedef float (*ssim_end4_t)(int sum0[5][4], int sum1[5][4], int width);
typedef uint64_t (*var_t)(const pixel* pix, intptr_t stride);
typedef void (*plane_copy_deinterleave_t)(pixel* dstu, intptr_t dstuStride, pixel* dstv, intptr_t dstvStride, const pixel* src, intptr_t srcStride, int w, int h);

typedef void (*filter_pp_t) (const pixel* src, intptr_t srcStride, pixel* dst, intptr_t dstStride, int coeffIdx);
typedef void (*filter_hps_t) (const pixel* src, intptr_t srcStride, int16_t* dst, intptr_t dstStride, int coeffIdx, int isRowExt);
typedef void (*filter_ps_t) (const pixel* src, intptr_t srcStride, int16_t* dst, intptr_t dstStride, int coeffIdx);
typedef void (*filter_sp_t) (const int16_t* src, intptr_t srcStride, pixel* dst, intptr_t dstStride, int coeffIdx);
typedef void (*filter_ss_t) (const int16_t* src, intptr_t srcStride, int16_t* dst, intptr_t dstStride, int coeffIdx);
typedef void (*filter_hv_pp_t) (const pixel* src, intptr_t srcStride, pixel* dst, intptr_t dstStride, int idxX, int idxY);
typedef void (*filter_p2s_t)(const pixel* src, intptr_t srcStride, int16_t* dst, intptr_t dstStride);

typedef void (*copy_pp_t)(pixel* dst, intptr_t dstStride, const pixel* src, intptr_t srcStride); // dst is aligned
typedef void (*copy_sp_t)(pixel* dst, intptr_t dstStride, const int16_t* src, intptr_t srcStride);
typedef void (*copy_ps_t)(int16_t* dst, intptr_t dstStride, const pixel* src, intptr_t srcStride);
typedef void (*copy_ss_t)(int16_t* dst, intptr_t dstStride, const int16_t* src, intptr_t srcStride);

typedef void (*pixel_sub_ps_t)(int16_t* dst, intptr_t dstride, const pixel* src0, const pixel* src1, intptr_t sstride0, intptr_t sstride1);
typedef void (*pixel_add_ps_t)(pixel* a, intptr_t dstride, const pixel* b0, const int16_t* b1, intptr_t sstride0, intptr_t sstride1);
typedef void (*pixelavg_pp_t)(pixel* dst, intptr_t dstride, const pixel* src0, intptr_t sstride0, const pixel* src1, intptr_t sstride1, int weight);
typedef void (*addAvg_t)(const int16_t* src0, const int16_t* src1, pixel* dst, intptr_t src0Stride, intptr_t src1Stride, intptr_t dstStride);

typedef void (*saoCuOrgE0_t)(pixel* rec, int8_t* offsetEo, int width, int8_t* signLeft, intptr_t stride);
typedef void (*saoCuOrgE1_t)(pixel* rec, int8_t* upBuff1, int8_t* offsetEo, intptr_t stride, int width);
typedef void (*saoCuOrgE2_t)(pixel* rec, int8_t* pBufft, int8_t* pBuff1, int8_t* offsetEo, int lcuWidth, intptr_t stride);
typedef void (*saoCuOrgE3_t)(pixel* rec, int8_t* upBuff1, int8_t* m_offsetEo, intptr_t stride, int startX, int endX);
typedef void (*saoCuOrgB0_t)(pixel* rec, const int8_t* offsetBo, int ctuWidth, int ctuHeight, intptr_t stride);

typedef void (*saoCuStatsBO_t)(const int16_t *diff, const pixel *rec, intptr_t stride, int endX, int endY, int32_t *stats, int32_t *count);
typedef void (*saoCuStatsE0_t)(const int16_t *diff, const pixel *rec, intptr_t stride, int endX, int endY, int32_t *stats, int32_t *count);
typedef void (*saoCuStatsE1_t)(const int16_t *diff, const pixel *rec, intptr_t stride, int8_t *upBuff1, int endX, int endY, int32_t *stats, int32_t *count);
typedef void (*saoCuStatsE2_t)(const int16_t *diff, const pixel *rec, intptr_t stride, int8_t *upBuff1, int8_t *upBuff, int endX, int endY, int32_t *stats, int32_t *count);
typedef void (*saoCuStatsE3_t)(const int16_t *diff, const pixel *rec, intptr_t stride, int8_t *upBuff1, int endX, int endY, int32_t *stats, int32_t *count);

typedef void (*sign_t)(int8_t *dst, const pixel *src1, const pixel *src2, const int endX);
typedef void (*planecopy_cp_t) (const uint8_t* src, intptr_t srcStride, pixel* dst, intptr_t dstStride, int width, int height, int shift);
typedef void (*planecopy_sp_t) (const uint16_t* src, intptr_t srcStride, pixel* dst, intptr_t dstStride, int width, int height, int shift, uint16_t mask);
typedef void (*planecopy_pp_t) (const pixel* src, intptr_t srcStride, pixel* dst, intptr_t dstStride, int width, int height, int shift);
typedef pixel (*planeClipAndMax_t)(pixel *src, intptr_t stride, int width, int height, uint64_t *outsum, const pixel minPix, const pixel maxPix);

typedef void (*cutree_propagate_cost) (int* dst, const uint16_t* propagateIn, const int32_t* intraCosts, const uint16_t* interCosts, const int32_t* invQscales, const double* fpsFactor, int len);

typedef void (*cutree_fix8_unpack)(double *dst, uint16_t *src, int count);
typedef void (*cutree_fix8_pack)(uint16_t *dst, double *src, int count);

typedef int (*scanPosLast_t)(const uint16_t *scan, const coeff_t *coeff, uint16_t *coeffSign, uint16_t *coeffFlag, uint8_t *coeffNum, int numSig, const uint16_t* scanCG4x4, const int trSize);
typedef uint32_t (*findPosFirstLast_t)(const int16_t *dstCoeff, const intptr_t trSize, const uint16_t scanTbl[16]);

typedef uint32_t (*costCoeffNxN_t)(const uint16_t *scan, const coeff_t *coeff, intptr_t trSize, uint16_t *absCoeff, const uint8_t *tabSigCtx, uint32_t scanFlagMask, uint8_t *baseCtx, int offset, int scanPosSigOff, int subPosBase);
typedef uint32_t (*costCoeffRemain_t)(uint16_t *absCoeff, int numNonZero, int idx);
typedef uint32_t (*costC1C2Flag_t)(uint16_t *absCoeff, intptr_t numC1Flag, uint8_t *baseCtxMod, intptr_t ctxOffset);

typedef void (*pelFilterLumaStrong_t)(pixel* src, intptr_t srcStep, intptr_t offset, int32_t tcP, int32_t tcQ);
typedef void (*pelFilterChroma_t)(pixel* src, intptr_t srcStep, intptr_t offset, int32_t tc, int32_t maskP, int32_t maskQ);

typedef void (*integralv_t)(uint32_t *sum, intptr_t stride);
typedef void (*integralh_t)(uint32_t *sum, pixel *pix, intptr_t stride);
typedef void(*nonPsyRdoQuant_t)(int16_t *m_resiDctCoeff, int64_t *costUncoded, int64_t *totalUncodedCost, int64_t *totalRdCost, uint32_t blkPos);
typedef void(*psyRdoQuant_t)(int16_t *m_resiDctCoeff, int16_t *m_fencDctCoeff, int64_t *costUncoded, int64_t *totalUncodedCost, int64_t *totalRdCost, int64_t *psyScale, uint32_t blkPos);
typedef void(*psyRdoQuant_t1)(int16_t *m_resiDctCoeff, int64_t *costUncoded, int64_t *totalUncodedCost, int64_t *totalRdCost,uint32_t blkPos);
typedef void(*psyRdoQuant_t2)(int16_t *m_resiDctCoeff, int16_t *m_fencDctCoeff, int64_t *costUncoded, int64_t *totalUncodedCost, int64_t *totalRdCost, int64_t *psyScale, uint32_t blkPos);
typedef void(*ssimDistortion_t)(const pixel *fenc, uint32_t fStride, const pixel *recon,  intptr_t rstride, uint64_t *ssBlock, int shift, uint64_t *ac_k);
typedef void(*normFactor_t)(const pixel *src, uint32_t blockSize, int shift, uint64_t *z_k);
/* SubSampling Luma */
typedef void (*downscaleluma_t)(const pixel* src0, pixel* dstf, intptr_t src_stride, intptr_t dst_stride, int width, int height);
/* Function pointers to optimized encoder primitives. Each pointer can reference
 * either an assembly routine, a SIMD intrinsic primitive, or a C function */
struct EncoderPrimitives
{
    /* These primitives can be used for any sized prediction unit (from 4x4 to
     * 64x64, square, rectangular - 50/50 or asymmetrical - 25/75) and are
     * generally restricted to motion estimation and motion compensation (inter
     * prediction. Note that the 4x4 PU can only be used for intra, which is
     * really a 4x4 TU, so at most copy_pp and satd will use 4x4. This array is
     * indexed by LumaPU values, which can be retrieved by partitionFromSizes() */
    struct PU
    {
        pixelcmp_t     sad;         // Sum of Absolute Differences
        pixelcmp_x3_t  sad_x3;      // Sum of Absolute Differences, 3 mv offsets at once
        pixelcmp_x4_t  sad_x4;      // Sum of Absolute Differences, 4 mv offsets at once
        pixelcmp_ads_t ads;         // Absolute Differences sum
        pixelcmp_t     satd;        // Sum of Absolute Transformed Differences (4x4 Hadamard)

        filter_pp_t    luma_hpp;    // 8-tap luma motion compensation interpolation filters
        filter_hps_t   luma_hps;
        filter_pp_t    luma_vpp;
        filter_ps_t    luma_vps;
        filter_sp_t    luma_vsp;
        filter_ss_t    luma_vss;
        filter_hv_pp_t luma_hvpp;   // combines hps + vsp
        pixelavg_pp_t  pixelavg_pp[NUM_ALIGNMENT_TYPES]; // quick bidir using pixels (borrowed from x264)
        addAvg_t       addAvg[NUM_ALIGNMENT_TYPES];      // bidir motion compensation, uses 16bit values
        copy_pp_t      copy_pp;
        filter_p2s_t   convert_p2s[NUM_ALIGNMENT_TYPES];
    }
    pu[NUM_PU_SIZES];

    /* These primitives can be used for square TU blocks (4x4 to 32x32) or
     * possibly square CU blocks (8x8 to 64x64). Some primitives are used for
     * both CU and TU so we merge them into one array that is indexed uniformly.
     * This keeps the index logic uniform and simple and improves cache
     * coherency. CU only primitives will leave 4x4 pointers NULL while TU only
     * primitives will leave 64x64 pointers NULL.  Indexed by LumaCU */
    struct CU
    {
        dct_t           dct;    // active dct transformation
        idct_t          idct;   // active idct transformation

        dct_t           standard_dct;   // original dct function, used by lowpass_dct
        dct_t           lowpass_dct;    // lowpass dct approximation

        calcresidual_t  calcresidual[NUM_ALIGNMENT_TYPES];
        pixel_sub_ps_t  sub_ps;
        pixel_add_ps_t  add_ps[NUM_ALIGNMENT_TYPES];
        blockfill_s_t   blockfill_s[NUM_ALIGNMENT_TYPES];   // block fill, for DC transforms
        copy_cnt_t      copy_cnt;      // copy coeff while counting non-zero
        count_nonzero_t count_nonzero;
        cpy2Dto1D_shl_t cpy2Dto1D_shl;
        cpy2Dto1D_shr_t cpy2Dto1D_shr;
        cpy1Dto2D_shl_t cpy1Dto2D_shl[NUM_ALIGNMENT_TYPES];
        cpy1Dto2D_shr_t cpy1Dto2D_shr;
        copy_sp_t       copy_sp;
        copy_ps_t       copy_ps;
        copy_ss_t       copy_ss;
        copy_pp_t       copy_pp;       // alias to pu[].copy_pp

        var_t           var;           // block internal variance

        pixel_sse_t     sse_pp;        // Sum of Square Error (pixel, pixel) fenc alignment not assumed
        pixel_sse_ss_t  sse_ss;        // Sum of Square Error (short, short) fenc alignment not assumed
        pixelcmp_t      psy_cost_pp;   // difference in AC energy between two pixel blocks
        pixel_ssd_s_t   ssd_s[NUM_ALIGNMENT_TYPES];         // Sum of Square Error (residual coeff to self)
        pixelcmp_t      sa8d;          // Sum of Transformed Differences (8x8 Hadamard), uses satd for 4x4 intra TU
        transpose_t     transpose;     // transpose pixel block; for use with intra all-angs
        intra_allangs_t intra_pred_allangs;
        intra_filter_t  intra_filter;
        intra_pred_t    intra_pred[NUM_INTRA_MODE];
        nonPsyRdoQuant_t nonPsyRdoQuant;
        psyRdoQuant_t    psyRdoQuant;
		psyRdoQuant_t1   psyRdoQuant_1p;
		psyRdoQuant_t2   psyRdoQuant_2p;
        ssimDistortion_t ssimDist;
        normFactor_t     normFact;
    }
    cu[NUM_CU_SIZES];
    /* These remaining primitives work on either fixed block sizes or take
     * block dimensions as arguments and thus do not belong in either the PU or
     * the CU arrays */
    dct_t                 dst4x4;
    idct_t                idst4x4;

    quant_t               quant;
    nquant_t              nquant;
    dequant_scaling_t     dequant_scaling;
    dequant_normal_t      dequant_normal;
    denoiseDct_t          denoiseDct;
    scale1D_t             scale1D_128to64[NUM_ALIGNMENT_TYPES];
    scale2D_t             scale2D_64to32;

    ssim_4x4x2_core_t     ssim_4x4x2_core;
    ssim_end4_t           ssim_end_4;

    sign_t                sign;
    saoCuOrgE0_t          saoCuOrgE0;

    /* To avoid the overhead in avx2 optimization in handling width=16, SAO_E0_1 is split
     * into two parts: saoCuOrgE1, saoCuOrgE1_2Rows */
    saoCuOrgE1_t          saoCuOrgE1, saoCuOrgE1_2Rows;

    // saoCuOrgE2[0] is used for width<=16 and saoCuOrgE2[1] is used for width > 16.
    saoCuOrgE2_t          saoCuOrgE2[2];

    /* In avx2 optimization, two rows cannot be handled simultaneously since it requires 
     * a pixel from the previous row. So, saoCuOrgE3[0] is used for width<=16 and 
     * saoCuOrgE3[1] is used for width > 16. */
    saoCuOrgE3_t          saoCuOrgE3[2];
    saoCuOrgB0_t          saoCuOrgB0;

    saoCuStatsBO_t        saoCuStatsBO;
    saoCuStatsE0_t        saoCuStatsE0;
    saoCuStatsE1_t        saoCuStatsE1;
    saoCuStatsE2_t        saoCuStatsE2;
    saoCuStatsE3_t        saoCuStatsE3;

    downscale_t           frameInitLowres;
    downscale_t           frameInitLowerRes;
    /* Sub Sample Luma */
    downscaleluma_t        frameSubSampleLuma;
    cutree_propagate_cost propagateCost;
    cutree_fix8_unpack    fix8Unpack;
    cutree_fix8_pack      fix8Pack;

    extendCURowBorder_t   extendRowBorder;
    planecopy_cp_t        planecopy_cp;
    planecopy_sp_t        planecopy_sp;
    planecopy_sp_t        planecopy_sp_shl;
    planecopy_pp_t        planecopy_pp_shr;
    planeClipAndMax_t     planeClipAndMax;

    weightp_sp_t          weight_sp;
    weightp_pp_t          weight_pp;


    scanPosLast_t         scanPosLast;
    findPosFirstLast_t    findPosFirstLast;

    costCoeffNxN_t        costCoeffNxN;
    costCoeffRemain_t     costCoeffRemain;
    costC1C2Flag_t        costC1C2Flag;

    pelFilterLumaStrong_t pelFilterLumaStrong[2]; // EDGE_VER = 0, EDGE_HOR = 1
    pelFilterChroma_t     pelFilterChroma[2];     // EDGE_VER = 0, EDGE_HOR = 1

    integralv_t            integral_initv[NUM_INTEGRAL_SIZE];
    integralh_t            integral_inith[NUM_INTEGRAL_SIZE];

    /* There is one set of chroma primitives per color space. An encoder will
     * have just a single color space and thus it will only ever use one entry
     * in this array. However we always fill all entries in the array in case
     * multiple encoders with different color spaces share the primitive table
     * in a single process. Note that 4:2:0 PU and CU are 1/2 width and 1/2
     * height of their luma counterparts. 4:2:2 PU and CU are 1/2 width and full
     * height, while 4:4:4 directly uses the luma block sizes and shares luma
     * primitives for all cases except for the interpolation filters. 4:4:4
     * interpolation filters have luma partition sizes but are only 4-tap. */
    struct Chroma
    {
        /* Chroma prediction unit primitives. Indexed by LumaPU */
        struct PUChroma
        {
            pixelcmp_t   satd;      // if chroma PU is not multiple of 4x4, will be NULL
            filter_pp_t  filter_vpp;
            filter_ps_t  filter_vps;
            filter_sp_t  filter_vsp;
            filter_ss_t  filter_vss;
            filter_pp_t  filter_hpp;
            filter_hps_t filter_hps;
            addAvg_t     addAvg[NUM_ALIGNMENT_TYPES];
            copy_pp_t    copy_pp;
            filter_p2s_t p2s[NUM_ALIGNMENT_TYPES];

        }
        pu[NUM_PU_SIZES];

        /* Chroma transform and coding unit primitives. Indexed by LumaCU */
        struct CUChroma
        {
            pixelcmp_t     sa8d;    // if chroma CU is not multiple of 8x8, will use satd
            pixel_sse_t    sse_pp;
            pixel_sub_ps_t sub_ps;
            pixel_add_ps_t add_ps[NUM_ALIGNMENT_TYPES];

            copy_ps_t      copy_ps;
            copy_sp_t      copy_sp;
            copy_ss_t      copy_ss;
            copy_pp_t      copy_pp;
        }
        cu[NUM_CU_SIZES];

    }
    chroma[X265_CSP_COUNT];
};

/* This copy of the table is what gets used by the encoder */
extern EncoderPrimitives primitives;

/* Returns a LumaPU enum for the given size, always expected to return a valid enum */
inline int partitionFromSizes(int width, int height)
{
    X265_CHECK(((width | height) & ~(4 | 8 | 16 | 32 | 64)) == 0, "Invalid block width/height\n");
    extern const uint8_t lumaPartitionMapTable[];
    int w = (width >> 2) - 1;
    int h = (height >> 2) - 1;
    int part = (int)lumaPartitionMapTable[(w << 4) + h];
    X265_CHECK(part != 255, "Invalid block width %d height %d\n", width, height);
    return part;
}

/* Computes the size of the LumaPU for a given LumaPU enum */
inline void sizesFromPartition(int part, int *width, int *height)
{
    X265_CHECK(part >= 0 && part <= 24, "Invalid part %d \n", part);
    extern const uint8_t lumaPartitionMapTable[];
    int index = 0;
    for (int i = 0; i < 256;i++)
        if (part == lumaPartitionMapTable[i])
        {
            index = i;
            break;
        }
    *width = 4 * ((index >> 4) + 1);
    *height = 4 * ((index % 16) + 1);
}

inline int partitionFromLog2Size(int log2Size)
{
    X265_CHECK(2 <= log2Size && log2Size <= 6, "Invalid block size\n");
    return log2Size - 2;
}

void setupCPrimitives(EncoderPrimitives &p);
void setupIntrinsicPrimitives(EncoderPrimitives &p, int cpuMask);
void setupAssemblyPrimitives(EncoderPrimitives &p, int cpuMask);
void setupAliasPrimitives(EncoderPrimitives &p);
#if HAVE_ALTIVEC
void setupPixelPrimitives_altivec(EncoderPrimitives &p);
void setupDCTPrimitives_altivec(EncoderPrimitives &p);
void setupFilterPrimitives_altivec(EncoderPrimitives &p);
void setupIntraPrimitives_altivec(EncoderPrimitives &p);
#endif
}

#if !EXPORT_C_API
extern const int   PFX(max_bit_depth);
extern const char* PFX(version_str);
extern const char* PFX(build_info_str);
#endif

#if ENABLE_ASSEMBLY && X265_ARCH_ARM64
extern "C" {
#include "aarch64/fun-decls.h"
}
#endif

#endif // ifndef X265_PRIMITIVES_H