1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
|
/*****************************************************************************
* Copyright (C) 2013-2020 MulticoreWare, Inc
*
* Authors: Steve Borho <steve@borho.org>
* Mandar Gurav <mandar@multicorewareinc.com>
* Deepthi Devaki Akkoorath <deepthidevaki@multicorewareinc.com>
* Mahesh Pittala <mahesh@multicorewareinc.com>
* Rajesh Paulraj <rajesh@multicorewareinc.com>
* Praveen Kumar Tiwari <praveen@multicorewareinc.com>
* Min Chen <chenm003@163.com>
* Hongbin Liu<liuhongbin1@huawei.com>
* Yimeng Su <yimeng.su@huawei.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
*
* This program is also available under a commercial proprietary license.
* For more information, contact us at license @ x265.com.
*****************************************************************************/
#ifndef X265_PRIMITIVES_H
#define X265_PRIMITIVES_H
#include "common.h"
#include "cpu.h"
namespace X265_NS {
// x265 private namespace
enum LumaPU
{
// Square (the first 5 PUs match the block sizes)
LUMA_4x4, LUMA_8x8, LUMA_16x16, LUMA_32x32, LUMA_64x64,
// Rectangular
LUMA_8x4, LUMA_4x8,
LUMA_16x8, LUMA_8x16,
LUMA_32x16, LUMA_16x32,
LUMA_64x32, LUMA_32x64,
// Asymmetrical (0.75, 0.25)
LUMA_16x12, LUMA_12x16, LUMA_16x4, LUMA_4x16,
LUMA_32x24, LUMA_24x32, LUMA_32x8, LUMA_8x32,
LUMA_64x48, LUMA_48x64, LUMA_64x16, LUMA_16x64,
NUM_PU_SIZES
};
enum LumaCU // can be indexed using log2n(width)-2
{
BLOCK_4x4,
BLOCK_8x8,
BLOCK_16x16,
BLOCK_32x32,
BLOCK_64x64,
NUM_CU_SIZES
};
enum AlignPrimitive
{
NONALIGNED,
ALIGNED,
NUM_ALIGNMENT_TYPES
};
enum { NUM_TR_SIZE = 4 }; // TU are 4x4, 8x8, 16x16, and 32x32
/* Chroma partition sizes. These enums are only a convenience for indexing into
* the chroma primitive arrays when instantiating macros or templates. The
* chroma function tables should always be indexed by a LumaPU enum when used. */
enum ChromaPU420
{
CHROMA_420_2x2, CHROMA_420_4x4, CHROMA_420_8x8, CHROMA_420_16x16, CHROMA_420_32x32,
CHROMA_420_4x2, CHROMA_420_2x4,
CHROMA_420_8x4, CHROMA_420_4x8,
CHROMA_420_16x8, CHROMA_420_8x16,
CHROMA_420_32x16, CHROMA_420_16x32,
CHROMA_420_8x6, CHROMA_420_6x8, CHROMA_420_8x2, CHROMA_420_2x8,
CHROMA_420_16x12, CHROMA_420_12x16, CHROMA_420_16x4, CHROMA_420_4x16,
CHROMA_420_32x24, CHROMA_420_24x32, CHROMA_420_32x8, CHROMA_420_8x32,
};
enum ChromaCU420
{
BLOCK_420_2x2,
BLOCK_420_4x4,
BLOCK_420_8x8,
BLOCK_420_16x16,
BLOCK_420_32x32
};
enum ChromaPU422
{
CHROMA_422_2x4, CHROMA_422_4x8, CHROMA_422_8x16, CHROMA_422_16x32, CHROMA_422_32x64,
CHROMA_422_4x4, CHROMA_422_2x8,
CHROMA_422_8x8, CHROMA_422_4x16,
CHROMA_422_16x16, CHROMA_422_8x32,
CHROMA_422_32x32, CHROMA_422_16x64,
CHROMA_422_8x12, CHROMA_422_6x16, CHROMA_422_8x4, CHROMA_422_2x16,
CHROMA_422_16x24, CHROMA_422_12x32, CHROMA_422_16x8, CHROMA_422_4x32,
CHROMA_422_32x48, CHROMA_422_24x64, CHROMA_422_32x16, CHROMA_422_8x64,
};
enum ChromaCU422
{
BLOCK_422_2x4,
BLOCK_422_4x8,
BLOCK_422_8x16,
BLOCK_422_16x32,
BLOCK_422_32x64
};
enum IntegralSize
{
INTEGRAL_4,
INTEGRAL_8,
INTEGRAL_12,
INTEGRAL_16,
INTEGRAL_24,
INTEGRAL_32,
NUM_INTEGRAL_SIZE
};
typedef int (*pixelcmp_t)(const pixel* fenc, intptr_t fencstride, const pixel* fref, intptr_t frefstride); // fenc is aligned
typedef int (*pixelcmp_ss_t)(const int16_t* fenc, intptr_t fencstride, const int16_t* fref, intptr_t frefstride);
typedef sse_t (*pixel_sse_t)(const pixel* fenc, intptr_t fencstride, const pixel* fref, intptr_t frefstride); // fenc is aligned
typedef sse_t (*pixel_sse_ss_t)(const int16_t* fenc, intptr_t fencstride, const int16_t* fref, intptr_t frefstride);
typedef sse_t (*pixel_ssd_s_t)(const int16_t* fenc, intptr_t fencstride);
typedef int(*pixelcmp_ads_t)(int encDC[], uint32_t *sums, int delta, uint16_t *costMvX, int16_t *mvs, int width, int thresh);
typedef void (*pixelcmp_x4_t)(const pixel* fenc, const pixel* fref0, const pixel* fref1, const pixel* fref2, const pixel* fref3, intptr_t frefstride, int32_t* res);
typedef void (*pixelcmp_x3_t)(const pixel* fenc, const pixel* fref0, const pixel* fref1, const pixel* fref2, intptr_t frefstride, int32_t* res);
typedef void (*blockfill_s_t)(int16_t* dst, intptr_t dstride, int16_t val);
typedef void (*intra_pred_t)(pixel* dst, intptr_t dstStride, const pixel *srcPix, int dirMode, int bFilter);
typedef void (*intra_allangs_t)(pixel *dst, pixel *refPix, pixel *filtPix, int bLuma);
typedef void (*intra_filter_t)(const pixel* references, pixel* filtered);
typedef void (*cpy2Dto1D_shl_t)(int16_t* dst, const int16_t* src, intptr_t srcStride, int shift);
typedef void (*cpy2Dto1D_shr_t)(int16_t* dst, const int16_t* src, intptr_t srcStride, int shift);
typedef void (*cpy1Dto2D_shl_t)(int16_t* dst, const int16_t* src, intptr_t dstStride, int shift);
typedef void (*cpy1Dto2D_shr_t)(int16_t* dst, const int16_t* src, intptr_t dstStride, int shift);
typedef uint32_t (*copy_cnt_t)(int16_t* coeff, const int16_t* residual, intptr_t resiStride);
typedef void (*dct_t)(const int16_t* src, int16_t* dst, intptr_t srcStride);
typedef void (*idct_t)(const int16_t* src, int16_t* dst, intptr_t dstStride);
typedef void (*denoiseDct_t)(int16_t* dctCoef, uint32_t* resSum, const uint16_t* offset, int numCoeff);
typedef void (*calcresidual_t)(const pixel* fenc, const pixel* pred, int16_t* residual, intptr_t stride);
typedef void (*transpose_t)(pixel* dst, const pixel* src, intptr_t stride);
typedef uint32_t (*quant_t)(const int16_t* coef, const int32_t* quantCoeff, int32_t* deltaU, int16_t* qCoef, int qBits, int add, int numCoeff);
typedef uint32_t (*nquant_t)(const int16_t* coef, const int32_t* quantCoeff, int16_t* qCoef, int qBits, int add, int numCoeff);
typedef void (*dequant_scaling_t)(const int16_t* src, const int32_t* dequantCoef, int16_t* dst, int num, int mcqp_miper, int shift);
typedef void (*dequant_normal_t)(const int16_t* quantCoef, int16_t* coef, int num, int scale, int shift);
typedef int(*count_nonzero_t)(const int16_t* quantCoeff);
typedef void (*weightp_pp_t)(const pixel* src, pixel* dst, intptr_t stride, int width, int height, int w0, int round, int shift, int offset);
typedef void (*weightp_sp_t)(const int16_t* src, pixel* dst, intptr_t srcStride, intptr_t dstStride, int width, int height, int w0, int round, int shift, int offset);
typedef void (*scale1D_t)(pixel* dst, const pixel* src);
typedef void (*scale2D_t)(pixel* dst, const pixel* src, intptr_t stride);
typedef void (*downscale_t)(const pixel* src0, pixel* dstf, pixel* dsth, pixel* dstv, pixel* dstc,
intptr_t src_stride, intptr_t dst_stride, int width, int height);
typedef void (*extendCURowBorder_t)(pixel* txt, intptr_t stride, int width, int height, int marginX);
typedef void (*ssim_4x4x2_core_t)(const pixel* pix1, intptr_t stride1, const pixel* pix2, intptr_t stride2, int sums[2][4]);
typedef float (*ssim_end4_t)(int sum0[5][4], int sum1[5][4], int width);
typedef uint64_t (*var_t)(const pixel* pix, intptr_t stride);
typedef void (*plane_copy_deinterleave_t)(pixel* dstu, intptr_t dstuStride, pixel* dstv, intptr_t dstvStride, const pixel* src, intptr_t srcStride, int w, int h);
typedef void (*filter_pp_t) (const pixel* src, intptr_t srcStride, pixel* dst, intptr_t dstStride, int coeffIdx);
typedef void (*filter_hps_t) (const pixel* src, intptr_t srcStride, int16_t* dst, intptr_t dstStride, int coeffIdx, int isRowExt);
typedef void (*filter_ps_t) (const pixel* src, intptr_t srcStride, int16_t* dst, intptr_t dstStride, int coeffIdx);
typedef void (*filter_sp_t) (const int16_t* src, intptr_t srcStride, pixel* dst, intptr_t dstStride, int coeffIdx);
typedef void (*filter_ss_t) (const int16_t* src, intptr_t srcStride, int16_t* dst, intptr_t dstStride, int coeffIdx);
typedef void (*filter_hv_pp_t) (const pixel* src, intptr_t srcStride, pixel* dst, intptr_t dstStride, int idxX, int idxY);
typedef void (*filter_p2s_t)(const pixel* src, intptr_t srcStride, int16_t* dst, intptr_t dstStride);
typedef void (*copy_pp_t)(pixel* dst, intptr_t dstStride, const pixel* src, intptr_t srcStride); // dst is aligned
typedef void (*copy_sp_t)(pixel* dst, intptr_t dstStride, const int16_t* src, intptr_t srcStride);
typedef void (*copy_ps_t)(int16_t* dst, intptr_t dstStride, const pixel* src, intptr_t srcStride);
typedef void (*copy_ss_t)(int16_t* dst, intptr_t dstStride, const int16_t* src, intptr_t srcStride);
typedef void (*pixel_sub_ps_t)(int16_t* dst, intptr_t dstride, const pixel* src0, const pixel* src1, intptr_t sstride0, intptr_t sstride1);
typedef void (*pixel_add_ps_t)(pixel* a, intptr_t dstride, const pixel* b0, const int16_t* b1, intptr_t sstride0, intptr_t sstride1);
typedef void (*pixelavg_pp_t)(pixel* dst, intptr_t dstride, const pixel* src0, intptr_t sstride0, const pixel* src1, intptr_t sstride1, int weight);
typedef void (*addAvg_t)(const int16_t* src0, const int16_t* src1, pixel* dst, intptr_t src0Stride, intptr_t src1Stride, intptr_t dstStride);
typedef void (*saoCuOrgE0_t)(pixel* rec, int8_t* offsetEo, int width, int8_t* signLeft, intptr_t stride);
typedef void (*saoCuOrgE1_t)(pixel* rec, int8_t* upBuff1, int8_t* offsetEo, intptr_t stride, int width);
typedef void (*saoCuOrgE2_t)(pixel* rec, int8_t* pBufft, int8_t* pBuff1, int8_t* offsetEo, int lcuWidth, intptr_t stride);
typedef void (*saoCuOrgE3_t)(pixel* rec, int8_t* upBuff1, int8_t* m_offsetEo, intptr_t stride, int startX, int endX);
typedef void (*saoCuOrgB0_t)(pixel* rec, const int8_t* offsetBo, int ctuWidth, int ctuHeight, intptr_t stride);
typedef void (*saoCuStatsBO_t)(const int16_t *diff, const pixel *rec, intptr_t stride, int endX, int endY, int32_t *stats, int32_t *count);
typedef void (*saoCuStatsE0_t)(const int16_t *diff, const pixel *rec, intptr_t stride, int endX, int endY, int32_t *stats, int32_t *count);
typedef void (*saoCuStatsE1_t)(const int16_t *diff, const pixel *rec, intptr_t stride, int8_t *upBuff1, int endX, int endY, int32_t *stats, int32_t *count);
typedef void (*saoCuStatsE2_t)(const int16_t *diff, const pixel *rec, intptr_t stride, int8_t *upBuff1, int8_t *upBuff, int endX, int endY, int32_t *stats, int32_t *count);
typedef void (*saoCuStatsE3_t)(const int16_t *diff, const pixel *rec, intptr_t stride, int8_t *upBuff1, int endX, int endY, int32_t *stats, int32_t *count);
typedef void (*sign_t)(int8_t *dst, const pixel *src1, const pixel *src2, const int endX);
typedef void (*planecopy_cp_t) (const uint8_t* src, intptr_t srcStride, pixel* dst, intptr_t dstStride, int width, int height, int shift);
typedef void (*planecopy_sp_t) (const uint16_t* src, intptr_t srcStride, pixel* dst, intptr_t dstStride, int width, int height, int shift, uint16_t mask);
typedef void (*planecopy_pp_t) (const pixel* src, intptr_t srcStride, pixel* dst, intptr_t dstStride, int width, int height, int shift);
typedef pixel (*planeClipAndMax_t)(pixel *src, intptr_t stride, int width, int height, uint64_t *outsum, const pixel minPix, const pixel maxPix);
typedef void (*cutree_propagate_cost) (int* dst, const uint16_t* propagateIn, const int32_t* intraCosts, const uint16_t* interCosts, const int32_t* invQscales, const double* fpsFactor, int len);
typedef void (*cutree_fix8_unpack)(double *dst, uint16_t *src, int count);
typedef void (*cutree_fix8_pack)(uint16_t *dst, double *src, int count);
typedef int (*scanPosLast_t)(const uint16_t *scan, const coeff_t *coeff, uint16_t *coeffSign, uint16_t *coeffFlag, uint8_t *coeffNum, int numSig, const uint16_t* scanCG4x4, const int trSize);
typedef uint32_t (*findPosFirstLast_t)(const int16_t *dstCoeff, const intptr_t trSize, const uint16_t scanTbl[16]);
typedef uint32_t (*costCoeffNxN_t)(const uint16_t *scan, const coeff_t *coeff, intptr_t trSize, uint16_t *absCoeff, const uint8_t *tabSigCtx, uint32_t scanFlagMask, uint8_t *baseCtx, int offset, int scanPosSigOff, int subPosBase);
typedef uint32_t (*costCoeffRemain_t)(uint16_t *absCoeff, int numNonZero, int idx);
typedef uint32_t (*costC1C2Flag_t)(uint16_t *absCoeff, intptr_t numC1Flag, uint8_t *baseCtxMod, intptr_t ctxOffset);
typedef void (*pelFilterLumaStrong_t)(pixel* src, intptr_t srcStep, intptr_t offset, int32_t tcP, int32_t tcQ);
typedef void (*pelFilterChroma_t)(pixel* src, intptr_t srcStep, intptr_t offset, int32_t tc, int32_t maskP, int32_t maskQ);
typedef void (*integralv_t)(uint32_t *sum, intptr_t stride);
typedef void (*integralh_t)(uint32_t *sum, pixel *pix, intptr_t stride);
typedef void(*nonPsyRdoQuant_t)(int16_t *m_resiDctCoeff, int64_t *costUncoded, int64_t *totalUncodedCost, int64_t *totalRdCost, uint32_t blkPos);
typedef void(*psyRdoQuant_t)(int16_t *m_resiDctCoeff, int16_t *m_fencDctCoeff, int64_t *costUncoded, int64_t *totalUncodedCost, int64_t *totalRdCost, int64_t *psyScale, uint32_t blkPos);
typedef void(*psyRdoQuant_t1)(int16_t *m_resiDctCoeff, int64_t *costUncoded, int64_t *totalUncodedCost, int64_t *totalRdCost,uint32_t blkPos);
typedef void(*psyRdoQuant_t2)(int16_t *m_resiDctCoeff, int16_t *m_fencDctCoeff, int64_t *costUncoded, int64_t *totalUncodedCost, int64_t *totalRdCost, int64_t *psyScale, uint32_t blkPos);
typedef void(*ssimDistortion_t)(const pixel *fenc, uint32_t fStride, const pixel *recon, intptr_t rstride, uint64_t *ssBlock, int shift, uint64_t *ac_k);
typedef void(*normFactor_t)(const pixel *src, uint32_t blockSize, int shift, uint64_t *z_k);
/* SubSampling Luma */
typedef void (*downscaleluma_t)(const pixel* src0, pixel* dstf, intptr_t src_stride, intptr_t dst_stride, int width, int height);
/* Function pointers to optimized encoder primitives. Each pointer can reference
* either an assembly routine, a SIMD intrinsic primitive, or a C function */
struct EncoderPrimitives
{
/* These primitives can be used for any sized prediction unit (from 4x4 to
* 64x64, square, rectangular - 50/50 or asymmetrical - 25/75) and are
* generally restricted to motion estimation and motion compensation (inter
* prediction. Note that the 4x4 PU can only be used for intra, which is
* really a 4x4 TU, so at most copy_pp and satd will use 4x4. This array is
* indexed by LumaPU values, which can be retrieved by partitionFromSizes() */
struct PU
{
pixelcmp_t sad; // Sum of Absolute Differences
pixelcmp_x3_t sad_x3; // Sum of Absolute Differences, 3 mv offsets at once
pixelcmp_x4_t sad_x4; // Sum of Absolute Differences, 4 mv offsets at once
pixelcmp_ads_t ads; // Absolute Differences sum
pixelcmp_t satd; // Sum of Absolute Transformed Differences (4x4 Hadamard)
filter_pp_t luma_hpp; // 8-tap luma motion compensation interpolation filters
filter_hps_t luma_hps;
filter_pp_t luma_vpp;
filter_ps_t luma_vps;
filter_sp_t luma_vsp;
filter_ss_t luma_vss;
filter_hv_pp_t luma_hvpp; // combines hps + vsp
pixelavg_pp_t pixelavg_pp[NUM_ALIGNMENT_TYPES]; // quick bidir using pixels (borrowed from x264)
addAvg_t addAvg[NUM_ALIGNMENT_TYPES]; // bidir motion compensation, uses 16bit values
copy_pp_t copy_pp;
filter_p2s_t convert_p2s[NUM_ALIGNMENT_TYPES];
}
pu[NUM_PU_SIZES];
/* These primitives can be used for square TU blocks (4x4 to 32x32) or
* possibly square CU blocks (8x8 to 64x64). Some primitives are used for
* both CU and TU so we merge them into one array that is indexed uniformly.
* This keeps the index logic uniform and simple and improves cache
* coherency. CU only primitives will leave 4x4 pointers NULL while TU only
* primitives will leave 64x64 pointers NULL. Indexed by LumaCU */
struct CU
{
dct_t dct; // active dct transformation
idct_t idct; // active idct transformation
dct_t standard_dct; // original dct function, used by lowpass_dct
dct_t lowpass_dct; // lowpass dct approximation
calcresidual_t calcresidual[NUM_ALIGNMENT_TYPES];
pixel_sub_ps_t sub_ps;
pixel_add_ps_t add_ps[NUM_ALIGNMENT_TYPES];
blockfill_s_t blockfill_s[NUM_ALIGNMENT_TYPES]; // block fill, for DC transforms
copy_cnt_t copy_cnt; // copy coeff while counting non-zero
count_nonzero_t count_nonzero;
cpy2Dto1D_shl_t cpy2Dto1D_shl;
cpy2Dto1D_shr_t cpy2Dto1D_shr;
cpy1Dto2D_shl_t cpy1Dto2D_shl[NUM_ALIGNMENT_TYPES];
cpy1Dto2D_shr_t cpy1Dto2D_shr;
copy_sp_t copy_sp;
copy_ps_t copy_ps;
copy_ss_t copy_ss;
copy_pp_t copy_pp; // alias to pu[].copy_pp
var_t var; // block internal variance
pixel_sse_t sse_pp; // Sum of Square Error (pixel, pixel) fenc alignment not assumed
pixel_sse_ss_t sse_ss; // Sum of Square Error (short, short) fenc alignment not assumed
pixelcmp_t psy_cost_pp; // difference in AC energy between two pixel blocks
pixel_ssd_s_t ssd_s[NUM_ALIGNMENT_TYPES]; // Sum of Square Error (residual coeff to self)
pixelcmp_t sa8d; // Sum of Transformed Differences (8x8 Hadamard), uses satd for 4x4 intra TU
transpose_t transpose; // transpose pixel block; for use with intra all-angs
intra_allangs_t intra_pred_allangs;
intra_filter_t intra_filter;
intra_pred_t intra_pred[NUM_INTRA_MODE];
nonPsyRdoQuant_t nonPsyRdoQuant;
psyRdoQuant_t psyRdoQuant;
psyRdoQuant_t1 psyRdoQuant_1p;
psyRdoQuant_t2 psyRdoQuant_2p;
ssimDistortion_t ssimDist;
normFactor_t normFact;
}
cu[NUM_CU_SIZES];
/* These remaining primitives work on either fixed block sizes or take
* block dimensions as arguments and thus do not belong in either the PU or
* the CU arrays */
dct_t dst4x4;
idct_t idst4x4;
quant_t quant;
nquant_t nquant;
dequant_scaling_t dequant_scaling;
dequant_normal_t dequant_normal;
denoiseDct_t denoiseDct;
scale1D_t scale1D_128to64[NUM_ALIGNMENT_TYPES];
scale2D_t scale2D_64to32;
ssim_4x4x2_core_t ssim_4x4x2_core;
ssim_end4_t ssim_end_4;
sign_t sign;
saoCuOrgE0_t saoCuOrgE0;
/* To avoid the overhead in avx2 optimization in handling width=16, SAO_E0_1 is split
* into two parts: saoCuOrgE1, saoCuOrgE1_2Rows */
saoCuOrgE1_t saoCuOrgE1, saoCuOrgE1_2Rows;
// saoCuOrgE2[0] is used for width<=16 and saoCuOrgE2[1] is used for width > 16.
saoCuOrgE2_t saoCuOrgE2[2];
/* In avx2 optimization, two rows cannot be handled simultaneously since it requires
* a pixel from the previous row. So, saoCuOrgE3[0] is used for width<=16 and
* saoCuOrgE3[1] is used for width > 16. */
saoCuOrgE3_t saoCuOrgE3[2];
saoCuOrgB0_t saoCuOrgB0;
saoCuStatsBO_t saoCuStatsBO;
saoCuStatsE0_t saoCuStatsE0;
saoCuStatsE1_t saoCuStatsE1;
saoCuStatsE2_t saoCuStatsE2;
saoCuStatsE3_t saoCuStatsE3;
downscale_t frameInitLowres;
downscale_t frameInitLowerRes;
/* Sub Sample Luma */
downscaleluma_t frameSubSampleLuma;
cutree_propagate_cost propagateCost;
cutree_fix8_unpack fix8Unpack;
cutree_fix8_pack fix8Pack;
extendCURowBorder_t extendRowBorder;
planecopy_cp_t planecopy_cp;
planecopy_sp_t planecopy_sp;
planecopy_sp_t planecopy_sp_shl;
planecopy_pp_t planecopy_pp_shr;
planeClipAndMax_t planeClipAndMax;
weightp_sp_t weight_sp;
weightp_pp_t weight_pp;
scanPosLast_t scanPosLast;
findPosFirstLast_t findPosFirstLast;
costCoeffNxN_t costCoeffNxN;
costCoeffRemain_t costCoeffRemain;
costC1C2Flag_t costC1C2Flag;
pelFilterLumaStrong_t pelFilterLumaStrong[2]; // EDGE_VER = 0, EDGE_HOR = 1
pelFilterChroma_t pelFilterChroma[2]; // EDGE_VER = 0, EDGE_HOR = 1
integralv_t integral_initv[NUM_INTEGRAL_SIZE];
integralh_t integral_inith[NUM_INTEGRAL_SIZE];
/* There is one set of chroma primitives per color space. An encoder will
* have just a single color space and thus it will only ever use one entry
* in this array. However we always fill all entries in the array in case
* multiple encoders with different color spaces share the primitive table
* in a single process. Note that 4:2:0 PU and CU are 1/2 width and 1/2
* height of their luma counterparts. 4:2:2 PU and CU are 1/2 width and full
* height, while 4:4:4 directly uses the luma block sizes and shares luma
* primitives for all cases except for the interpolation filters. 4:4:4
* interpolation filters have luma partition sizes but are only 4-tap. */
struct Chroma
{
/* Chroma prediction unit primitives. Indexed by LumaPU */
struct PUChroma
{
pixelcmp_t satd; // if chroma PU is not multiple of 4x4, will be NULL
filter_pp_t filter_vpp;
filter_ps_t filter_vps;
filter_sp_t filter_vsp;
filter_ss_t filter_vss;
filter_pp_t filter_hpp;
filter_hps_t filter_hps;
addAvg_t addAvg[NUM_ALIGNMENT_TYPES];
copy_pp_t copy_pp;
filter_p2s_t p2s[NUM_ALIGNMENT_TYPES];
}
pu[NUM_PU_SIZES];
/* Chroma transform and coding unit primitives. Indexed by LumaCU */
struct CUChroma
{
pixelcmp_t sa8d; // if chroma CU is not multiple of 8x8, will use satd
pixel_sse_t sse_pp;
pixel_sub_ps_t sub_ps;
pixel_add_ps_t add_ps[NUM_ALIGNMENT_TYPES];
copy_ps_t copy_ps;
copy_sp_t copy_sp;
copy_ss_t copy_ss;
copy_pp_t copy_pp;
}
cu[NUM_CU_SIZES];
}
chroma[X265_CSP_COUNT];
};
/* This copy of the table is what gets used by the encoder */
extern EncoderPrimitives primitives;
/* Returns a LumaPU enum for the given size, always expected to return a valid enum */
inline int partitionFromSizes(int width, int height)
{
X265_CHECK(((width | height) & ~(4 | 8 | 16 | 32 | 64)) == 0, "Invalid block width/height\n");
extern const uint8_t lumaPartitionMapTable[];
int w = (width >> 2) - 1;
int h = (height >> 2) - 1;
int part = (int)lumaPartitionMapTable[(w << 4) + h];
X265_CHECK(part != 255, "Invalid block width %d height %d\n", width, height);
return part;
}
/* Computes the size of the LumaPU for a given LumaPU enum */
inline void sizesFromPartition(int part, int *width, int *height)
{
X265_CHECK(part >= 0 && part <= 24, "Invalid part %d \n", part);
extern const uint8_t lumaPartitionMapTable[];
int index = 0;
for (int i = 0; i < 256;i++)
if (part == lumaPartitionMapTable[i])
{
index = i;
break;
}
*width = 4 * ((index >> 4) + 1);
*height = 4 * ((index % 16) + 1);
}
inline int partitionFromLog2Size(int log2Size)
{
X265_CHECK(2 <= log2Size && log2Size <= 6, "Invalid block size\n");
return log2Size - 2;
}
void setupCPrimitives(EncoderPrimitives &p);
void setupIntrinsicPrimitives(EncoderPrimitives &p, int cpuMask);
void setupAssemblyPrimitives(EncoderPrimitives &p, int cpuMask);
void setupAliasPrimitives(EncoderPrimitives &p);
#if HAVE_ALTIVEC
void setupPixelPrimitives_altivec(EncoderPrimitives &p);
void setupDCTPrimitives_altivec(EncoderPrimitives &p);
void setupFilterPrimitives_altivec(EncoderPrimitives &p);
void setupIntraPrimitives_altivec(EncoderPrimitives &p);
#endif
}
#if !EXPORT_C_API
extern const int PFX(max_bit_depth);
extern const char* PFX(version_str);
extern const char* PFX(build_info_str);
#endif
#if ENABLE_ASSEMBLY && X265_ARCH_ARM64
extern "C" {
#include "aarch64/fun-decls.h"
}
#endif
#endif // ifndef X265_PRIMITIVES_H
|