File: glass_table.h

package info (click to toggle)
xapian-core 1.4.3-2%2Bdeb9u3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 21,412 kB
  • sloc: cpp: 113,868; ansic: 8,723; sh: 4,433; perl: 836; makefile: 566; tcl: 317; python: 40
file content (984 lines) | stat: -rw-r--r-- 31,104 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
/** @file glass_table.h
 * @brief Btree implementation
 */
/* Copyright 1999,2000,2001 BrightStation PLC
 * Copyright 2002,2003,2004,2005,2006,2007,2008,2009,2010,2012,2013,2014,2015,2016 Olly Betts
 * Copyright 2008 Lemur Consulting Ltd
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301
 * USA
 */

#ifndef OM_HGUARD_GLASS_TABLE_H
#define OM_HGUARD_GLASS_TABLE_H

#include <xapian/constants.h>
#include <xapian/error.h>

#include "glass_freelist.h"
#include "glass_cursor.h"
#include "glass_defs.h"

#include "io_utils.h"
#include "noreturn.h"
#include "omassert.h"
#include "str.h"
#include "stringutils.h"
#include "wordaccess.h"

#include "common/compression_stream.h"

#include <algorithm>
#include <string>

namespace Glass {

/** Even for items of at maximum size, it must be possible to get this number of
 *  items in a block */
const size_t BLOCK_CAPACITY = 4;

/** The largest possible value of a key_len.
 *
 *  This gives the upper limit of the size of a key that may be stored in the
 *  B-tree.
 */
#define GLASS_BTREE_MAX_KEY_LEN 255

// FIXME: This named constant probably isn't used everywhere it should be...
const int BYTES_PER_BLOCK_NUMBER = 4;

/*  The B-tree blocks have a number of internal lengths and offsets held in 1, 2
    or 4 bytes. To make the coding a little clearer,
       we use  for
       ------  ---
       K1      the 1 byte length of key
       I2      the 2 byte length of an item (key-tag pair)
       D2      the 2 byte offset to the item from the directory
       X2      the 2 byte component counter that ends each key
*/

const int K1 = 1;
const int I2 = 2;
const int D2 = 2;
const int X2 = 2;

/*  and when getting or setting them, we use these methods of the various
 *  *Item* classes: */

// getD(p, c)
// setD(p, c, x)
// getI()
// setI(x)
// getX(p, c)
// setX(p, c, x)

/* if you've been reading the comments from the top, the next four procedures
   will not cause any headaches.

   Recall that a leaf item has this form:

	   i k     x
	   | |     |
	   I K key X tag
	       ←K→
	   <---SIZE---->
	       <---I--->

   Except that X is omitted for the first component of a tag (there is a flag
   bit in the upper bits of I which indicates these).

   item_of(p, c) returns i, the address of the item at block address p,
   directory offset c,

   component_of(p, c) returns the number marked 'x' above,

   last_component(p, c) returns true if this is a final component.
*/

inline uint4 REVISION(const byte * b) { return aligned_read4(b); }
inline int GET_LEVEL(const byte * b) { return b[4]; }
inline int MAX_FREE(const byte * b) { return unaligned_read2(b + 5); }
inline int TOTAL_FREE(const byte * b) { return unaligned_read2(b + 7); }
inline int DIR_END(const byte * b) { return unaligned_read2(b + 9); }
const int DIR_START = 11;

inline void SET_REVISION(byte * b, uint4 rev) { aligned_write4(b, rev); }
inline void SET_LEVEL(byte * b, int x) { AssertRel(x,<,256); b[4] = x; }
inline void SET_MAX_FREE(byte * b, int x) { unaligned_write2(b + 5, x); }
inline void SET_TOTAL_FREE(byte * b, int x) { unaligned_write2(b + 7, x); }
inline void SET_DIR_END(byte * b, int x) { unaligned_write2(b + 9, x); }

// The item size is stored in 2 bytes, but the top bit is used to store a flag for
// "is the tag data compressed" and the next two bits are used to flag if this is the
// first and/or last item for this tag.
const int I_COMPRESSED_BIT = 0x80;
const int I_LAST_BIT = 0x40;
const int I_FIRST_BIT = 0x20;

const int I_MASK = (I_COMPRESSED_BIT|I_LAST_BIT|I_FIRST_BIT);

const int ITEM_SIZE_MASK = (0xffff &~ (I_MASK << 8));
const size_t MAX_ITEM_SIZE = (ITEM_SIZE_MASK + 3);

/** Freelist blocks have their level set to LEVEL_FREELIST. */
const int LEVEL_FREELIST = 254;

class RootInfo;

class Key {
    const byte *p;
public:
    explicit Key(const byte * p_) : p(p_) { }
    const byte * get_address() const { return p; }
    const byte * data() const { return p + K1; }
    void read(std::string * key) const {
	key->assign(reinterpret_cast<const char *>(p + K1), length());
    }
    int length() const {
	return p[0];
    }
    char operator[](size_t i) const {
	AssertRel(i,<,(size_t)length());
	return p[i + K1];
    }
};

// LeafItem_wr wants to be "LeafItem with non-const p and more methods" - we can't
// achieve that nicely with inheritance, so we use a template base class.
template <class T> class LeafItem_base {
protected:
    T p;
    int get_key_len() const { return p[I2]; }
    static int getD(const byte * q, int c) {
	AssertRel(c, >=, DIR_START);
	AssertRel(c, <, 65535);
	Assert((c & 1) == 1);
	return unaligned_read2(q + c);
    }
    int getI() const { return unaligned_read2(p); }
    static int getX(const byte * q, int c) { return unaligned_read2(q + c); }
public:
    /* LeafItem from block address and offset to item pointer */
    LeafItem_base(T p_, int c) : p(p_ + getD(p_, c)) { }
    explicit LeafItem_base(T p_) : p(p_) { }
    T get_address() const { return p; }
    /** SIZE in diagram above. */
    int size() const {
	return (getI() & ITEM_SIZE_MASK) + 3;
    }
    bool get_compressed() const { return *p & I_COMPRESSED_BIT; }
    bool first_component() const { return *p & I_FIRST_BIT; }
    bool last_component() const { return *p & I_LAST_BIT; }
    int component_of() const {
	if (first_component()) return 1;
	return getX(p, get_key_len() + I2 + K1);
    }
    Key key() const { return Key(p + I2); }
    void append_chunk(std::string * tag) const {
	// Offset to the start of the tag data.
	int cd = get_key_len() + I2 + K1;
	if (!first_component()) cd += X2;
	// Number of bytes to extract from current component.
	int l = size() - cd;
	const char * chunk = reinterpret_cast<const char *>(p + cd);
	tag->append(chunk, l);
    }
    bool decompress_chunk(CompressionStream& comp_stream, string& tag) const {
	// Offset to the start of the tag data.
	int cd = get_key_len() + I2 + K1;
	if (!first_component()) cd += X2;
	// Number of bytes to extract from current component.
	int l = size() - cd;
	const char * chunk = reinterpret_cast<const char *>(p + cd);
	return comp_stream.decompress_chunk(chunk, l, tag);
    }
};

class LeafItem : public LeafItem_base<const byte *> {
public:
    /* LeafItem from block address and offset to item pointer */
    LeafItem(const byte * p_, int c) : LeafItem_base<const byte *>(p_, c) { }
    explicit LeafItem(const byte * p_) : LeafItem_base<const byte *>(p_) { }
};

class LeafItem_wr : public LeafItem_base<byte *> {
    void set_key_len(int x) {
	AssertRel(x, >=, 0);
	AssertRel(x, <=, GLASS_BTREE_MAX_KEY_LEN);
	p[I2] = x;
    }
    void setI(int x) { unaligned_write2(p, x); }
    static void setX(byte * q, int c, int x) { unaligned_write2(q + c, x); }
public:
    /* LeafItem_wr from block address and offset to item pointer */
    LeafItem_wr(byte * p_, int c) : LeafItem_base<byte *>(p_, c) { }
    explicit LeafItem_wr(byte * p_) : LeafItem_base<byte *>(p_) { }
    void set_component_of(int i) {
	AssertRel(i,>,1);
	*p &=~ I_FIRST_BIT;
	setX(p, get_key_len() + I2 + K1, i);
    }
    void set_size(int new_size) {
	AssertRel(new_size,>=,3);
	int I = new_size - 3;
	// We should never be able to pass too large a size here, but don't
	// corrupt the database if this somehow happens.
	if (rare(I &~ ITEM_SIZE_MASK)) throw Xapian::DatabaseError("item too large!");
	setI(I);
    }
    void form_key(const std::string & key_) {
	std::string::size_type key_len = key_.length();
	if (key_len > GLASS_BTREE_MAX_KEY_LEN) {
	    // We check term length when a term is added to a document but
	    // glass doubles zero bytes, so this can still happen for terms
	    // which contain one or more zero bytes.
	    std::string msg("Key too long: length was ");
	    msg += str(key_len);
	    msg += " bytes, maximum length of a key is "
		   STRINGIZE(GLASS_BTREE_MAX_KEY_LEN) " bytes";
	    throw Xapian::InvalidArgumentError(msg);
	}

	set_key_len(key_len);
	std::memmove(p + I2 + K1, key_.data(), key_len);
	*p |= I_FIRST_BIT;
    }
    // FIXME passing cd here is icky
    void set_tag(int cd, const char *start, int len, bool compressed, int i, int m) {
	std::memmove(p + cd, start, len);
	set_size(cd + len);
	if (compressed) *p |= I_COMPRESSED_BIT;
	if (i == m) *p |= I_LAST_BIT;
	if (i == 1) {
	    *p |= I_FIRST_BIT;
	} else {
	    set_component_of(i);
	}
    }
    void fake_root_item() {
	set_key_len(0);   // null key length
	set_size(I2 + K1);   // length of the item
	*p |= I_FIRST_BIT|I_LAST_BIT;
    }
    operator const LeafItem() const { return LeafItem(p); }
    static void setD(byte * q, int c, int x) {
	AssertRel(c, >=, DIR_START);
	AssertRel(c, <, 65535);
	Assert((c & 1) == 1);
	unaligned_write2(q + c, x);
    }
};

/* A branch item has this form:

		 k     x
		 |     |
	     tag K key X
	     ←B→   ←K→
	     <--SIZE--->

	     B = BYTES_PER_BLOCK_NUMBER

   We can't omit X here, as we've nowhere to store the first and last bit
   flags which we have in leaf items.
*/

// BItem_wr wants to be "BItem with non-const p and more methods" - we can't
// achieve that nicely with inheritance, so we use a template base class.
template <class T> class BItem_base {
protected:
    T p;
    int get_key_len() const { return p[BYTES_PER_BLOCK_NUMBER]; }
    static int getD(const byte * q, int c) {
	AssertRel(c, >=, DIR_START);
	AssertRel(c, <, 65535);
	Assert((c & 1) == 1);
	return unaligned_read2(q + c);
    }
    static int getX(const byte * q, int c) { return unaligned_read2(q + c); }
public:
    /* BItem from block address and offset to item pointer */
    BItem_base(T p_, int c) : p(p_ + getD(p_, c)) { }
    explicit BItem_base(T p_) : p(p_) { }
    T get_address() const { return p; }
    /** SIZE in diagram above. */
    int size() const {
	return get_key_len() + K1 + X2 + BYTES_PER_BLOCK_NUMBER;
    }
    Key key() const { return Key(p + BYTES_PER_BLOCK_NUMBER); }
    /** Get this item's tag as a block number (this block should not be at
     *  level 0).
     */
    uint4 block_given_by() const {
	return unaligned_read4(p);
    }
    int component_of() const {
	return getX(p, get_key_len() + BYTES_PER_BLOCK_NUMBER + K1);
    }
};

class BItem : public BItem_base<const byte *> {
public:
    /* BItem from block address and offset to item pointer */
    BItem(const byte * p_, int c) : BItem_base<const byte *>(p_, c) { }
    explicit BItem(const byte * p_) : BItem_base<const byte *>(p_) { }
};

class BItem_wr : public BItem_base<byte *> {
    void set_key_len(int x) {
	AssertRel(x, >=, 0);
	AssertRel(x, <, GLASS_BTREE_MAX_KEY_LEN);
	p[BYTES_PER_BLOCK_NUMBER] = x;
    }
    static void setX(byte * q, int c, int x) { unaligned_write2(q + c, x); }
public:
    /* BItem_wr from block address and offset to item pointer */
    BItem_wr(byte * p_, int c) : BItem_base<byte *>(p_, c) { }
    explicit BItem_wr(byte * p_) : BItem_base<byte *>(p_) { }
    void set_component_of(int i) {
	setX(p, get_key_len() + BYTES_PER_BLOCK_NUMBER + K1, i);
    }
    void set_key_and_block(Key newkey, uint4 n) {
	int len = newkey.length() + K1 + X2;
	// Copy the key size, main part of the key and the count part.
	std::memcpy(p + BYTES_PER_BLOCK_NUMBER, newkey.get_address(), len);
	// Set tag contents to block number
	set_block_given_by(n);
    }
    // Takes size as we may be truncating newkey.
    void set_truncated_key_and_block(Key newkey, int new_comp,
				     int truncate_size, uint4 n) {
	int i = truncate_size;
	AssertRel(i,<=,newkey.length());
	// Key size
	set_key_len(i);
	// Copy the main part of the key, possibly truncating.
	std::memcpy(p + BYTES_PER_BLOCK_NUMBER + K1, newkey.get_address() + K1, i);
	// Set the component count.
	setX(p, BYTES_PER_BLOCK_NUMBER + K1 + i, new_comp);
	// Set tag contents to block number
	set_block_given_by(n);
    }

    /** Set this item's tag to point to block n (this block should not be at
     *  level 0).
     */
    void set_block_given_by(uint4 n) {
	unaligned_write4(p, n);
    }
    /** Form an item with a null key and with block number n in the tag.
     */
    void form_null_key(uint4 n) {
	set_block_given_by(n);
	set_key_len(0);        /* null key */
	set_component_of(0);
    }
    operator const BItem() const { return BItem(p); }
    static void setD(byte * q, int c, int x) {
	AssertRel(c, >=, DIR_START);
	AssertRel(c, <, 65535);
	Assert((c & 1) == 1);
	unaligned_write2(q + c, x);
    }
};

// Allow for BTREE_CURSOR_LEVELS levels in the B-tree.
// With 10, overflow is practically impossible
// FIXME: but we want it to be completely impossible...
const int BTREE_CURSOR_LEVELS = 10;

}

using Glass::RootInfo;

class GlassChanges;

/** Class managing a Btree table in a Glass database.
 *
 *  A table is a store holding a set of key/tag pairs.
 *
 *  A key is used to access a block of data in a glass table.
 *
 *  Keys are of limited length.
 *
 *  Keys may not be empty (each Btree has a special empty key for internal use).
 *
 *  A tag is a piece of data associated with a given key.  The contents
 *  of the tag are opaque to the Btree.
 *
 *  Tags may be of arbitrary length (the Btree imposes a very large limit).
 *  Note though that they will be loaded into memory in their entirety, so
 *  should not be permitted to grow without bound in normal usage.
 *
 *  Tags which are null strings _are_ valid, and are different from a
 *  tag simply not being in the table.
 */
class GlassTable {
    friend class GlassCursor; /* Should probably fix this. */
    friend class GlassFreeList;
    private:
	/// Copying not allowed
	GlassTable(const GlassTable &);

	/// Assignment not allowed
	GlassTable & operator=(const GlassTable &);

	void basic_open(const RootInfo * root_info,
			glass_revision_number_t rev);

	/** Perform the opening operation to read. */
	void do_open_to_read(const RootInfo * root_info,
			     glass_revision_number_t rev);

	/** Perform the opening operation to write. */
	void do_open_to_write(const RootInfo * root_info,
			      glass_revision_number_t rev = 0);

    public:
	/** Create a new Btree object.
	 *
	 *  This does not create the table on disk - the create_and_open()
	 *  method must be called to create the table on disk.
	 *
	 *  This also does not open the table - either the create_and_open()
	 *  or open() methods must be called before use is made of the table.
	 *
	 *  @param tablename_   The name of the table (used in changesets).
	 *  @param path_	Path at which the table is stored.
	 *  @param readonly_	whether to open the table for read only access.
	 *  @param lazy		If true, don't create the table until it's
	 *			needed.
	 */
	GlassTable(const char * tablename_, const std::string & path_,
		   bool readonly_, bool lazy = false);

	GlassTable(const char * tablename_, int fd, off_t offset_,
		   bool readonly_, bool lazy = false);

	/** Close the Btree.
	 *
	 *  Any outstanding changes (ie, changes made without commit() having
	 *  subsequently been called) will be lost.
	 */
	~GlassTable();

	/** Close the Btree.  This closes and frees any of the btree
	 *  structures which have been created and opened.
	 *
	 *  @param permanent If true, the Btree will not reopen on demand.
	 */
	void close(bool permanent = false);

	bool readahead_key(const string &key) const;

	/** Determine whether the btree exists on disk.
	 */
	bool exists() const;

	/** Open the btree.
	 *
	 *  @param flags_	flags for opening
	 *  @param root_info	root block info
	 *
	 *  @exception Xapian::DatabaseCorruptError will be thrown if the table
	 *	is in a corrupt state.
	 *  @exception Xapian::DatabaseOpeningError will be thrown if the table
	 *	cannot be opened (but is not corrupt - eg, permission problems,
	 *	not present, etc).
	 */
	void open(int flags_, const RootInfo & root_info,
		  glass_revision_number_t rev);

	/** Return true if this table is open.
	 *
	 *  NB If the table is lazy and doesn't yet exist, returns false.
	 */
	bool is_open() const { return handle >= 0; }

	/** Return true if this table is writable. */
	bool is_writable() const { return writable; }

	/** Flush any outstanding changes to the DB file of the table.
	 *
	 *  This must be called before commit, to ensure that the DB file is
	 *  ready to be switched to a new version by the commit.
	 */
	void flush_db();

	/** Commit any outstanding changes to the table.
	 *
	 *  Commit changes made by calling add() and del() to the Btree.
	 *
	 *  If an error occurs during the operation, this will be signalled
	 *  by an exception.  In case of error, changes made will not be
	 *  committed to the Btree - they will be discarded.
	 *
	 *  @param new_revision  The new revision number to store.  This must
	 *          be greater than the current revision number.  FIXME: If
	 *          we support rewinding to a previous revision, maybe this
	 *          needs to be greater than any previously used revision.
	 *
	 *  @param root_info  Information about the root is returned in this.
	 */
	void commit(glass_revision_number_t revision, RootInfo * root_info);

	bool sync() {
	    return (flags & Xapian::DB_NO_SYNC) ||
		   handle < 0 ||
		   io_sync(handle);
	}

	/** Cancel any outstanding changes.
	 *
	 *  This will discard any modifications which haven't been committed
	 *  by calling commit().
	 */
	void cancel(const RootInfo & root_info, glass_revision_number_t rev);

	/** Read an entry from the table, if and only if it is exactly that
	 *  being asked for.
	 *
	 *  If the key is found in the table, then the tag is copied to @a
	 *  tag.  If the key is not found tag is left unchanged.
	 *
	 *  The result is true iff the specified key is found in the Btree.
	 *
	 *  @param key  The key to look for in the table.
	 *  @param tag  A tag object to fill with the value if found.
	 *
	 *  @return true if key is found in table,
	 *          false if key is not found in table.
	 */
	bool get_exact_entry(const std::string & key, std::string & tag) const;

	/** Check if a key exists in the Btree.
	 *
	 *  This is just like get_exact_entry() except it doesn't read the tag
	 *  value so is more efficient if you only want to check that the key
	 *  exists.
	 *
	 *  @param key  The key to look for in the table.
	 *
	 *  @return true if key is found in table,
	 *          false if key is not found in table.
	 */
	bool key_exists(const std::string &key) const;

	/** Read the tag value for the key pointed to by cursor C_.
	 *
	 *  @param keep_compressed  Don't uncompress the tag - e.g. useful
	 *			    if it's just being opaquely copied.
	 *
	 *  @return	true if current_tag holds compressed data (always
	 *		false if keep_compressed was false).
	 */
	bool read_tag(Glass::Cursor * C_, std::string *tag, bool keep_compressed) const;

	/** Add a key/tag pair to the table, replacing any existing pair with
	 *  the same key.
	 *
	 *  If an error occurs during the operation, an exception will be
	 *  thrown.
	 *
	 *  If key is empty, then the null item is replaced.
	 *
	 *  e.g.    btree.add("TODAY", "Mon 9 Oct 2000");
	 *
	 *  @param key   The key to store in the table.
	 *  @param tag   The tag to store in the table.
	 *  @param already_compressed	true if tag is already compressed,
	 *		for example because it is being opaquely copied
	 *		(default: false).
	 */
	void add(const std::string &key, std::string tag, bool already_compressed = false);

	/** Delete an entry from the table.
	 *
	 *  The entry will be removed from the table, if it exists.  If
	 *  it does not exist, no action will be taken.  The item with
	 *  an empty key can't be removed, and false is returned.
	 *
	 *  If an error occurs during the operation, this will be signalled
	 *  by an exception.
	 *
	 *  e.g.    bool deleted = btree.del("TODAY")
	 *
	 *  @param key   The key to remove from the table.
	 *
	 *  @return true if an entry was removed; false if it did not exist.
	 */
	bool del(const std::string &key);

	int get_flags() const { return flags; }

	/** Create a new empty btree structure on disk and open it at the
	 *  initial revision.
	 *
	 *  The table must be writable - it doesn't make sense to create
	 *  a table that is read-only!
	 *
	 *  The block size must be less than 64K, where K = 1024. It is unwise
	 *  to use a small block size (less than 1024 perhaps), so we enforce a
	 *  minimum block size of 2K.
	 *
	 *  Example:
	 *
	 *    // File will be "X." + GLASS_TABLE_EXTENSION (i.e. "X.glass")
	 *    Btree btree("X.");
	 *    btree.create_and_open(0, root_info);
	 *
	 *  @param root_info     RootInfo object
	 *
	 *  @exception Xapian::DatabaseCreateError if the table can't be
	 *	created.
	 *  @exception Xapian::InvalidArgumentError if the requested blocksize
	 *	is unsuitable.
	 */
	void create_and_open(int flags_, const RootInfo & root_info);

	void set_full_compaction(bool parity);

	/** Get the revision number at which this table
	 *  is currently open.
	 *
	 *  It is possible that there are other, more recent or older
	 *  revisions available.
	 *
	 *  @return the current revision number.
	 */
	glass_revision_number_t get_open_revision_number() const {
	    return revision_number;
	}

	/** Return a count of the number of entries in the table.
	 *
	 *  The count does not include the ever-present item with null key.
	 *
	 *  Use @a empty() if you only want to know if the table is empty or
	 *  not.
	 *
	 *  @return The number of entries in the table.
	 */
	glass_tablesize_t get_entry_count() const {
	    return item_count;
	}

	/// Return true if there are no entries in the table.
	bool empty() const {
	    return (item_count == 0);
	}

	/** Get a cursor for reading from the table.
	 *
	 *  The cursor is owned by the caller - it is the caller's
	 *  responsibility to ensure that it is deleted.
	 */
	GlassCursor * cursor_get() const;

	/** Determine whether the object contains uncommitted modifications.
	 *
	 *  @return true if there have been modifications since the last
	 *          the last call to commit().
	 */
	bool is_modified() const { return Btree_modified; }

	/** Set the maximum item size given the block capacity.
	 *
	 *  At least this many items of maximum size must fit into a block.
	 *  The default is BLOCK_CAPACITY (which is currently 4).
	 */
	void set_max_item_size(size_t block_capacity) {
	    if (block_capacity > Glass::BLOCK_CAPACITY)
		block_capacity = Glass::BLOCK_CAPACITY;
	    using Glass::DIR_START;
	    using Glass::D2;
	    max_item_size = (block_size - DIR_START - block_capacity * D2)
		/ block_capacity;
	    // Make sure we don't exceed the limit imposed by the format.
	    if (max_item_size > Glass::MAX_ITEM_SIZE)
		max_item_size = Glass::MAX_ITEM_SIZE;
	}

	/** Set the GlassChanges object to write changed blocks to.
	 *
	 *  The GlassChanges object is not owned by the table, so the table
	 *  must not delete it.
	 */
	void set_changes(GlassChanges * changes) {
	    changes_obj = changes;
	}

	/// Throw an exception indicating that the database is closed.
	XAPIAN_NORETURN(static void throw_database_closed());

	string get_path() const {
	    return name + GLASS_TABLE_EXTENSION;
	}

    protected:

	bool find(Glass::Cursor *) const;
	int delete_kt();
	void read_block(uint4 n, byte *p) const;
	void write_block(uint4 n, const byte *p, bool appending = false) const;
	XAPIAN_NORETURN(void set_overwritten() const);
	void block_to_cursor(Glass::Cursor *C_, int j, uint4 n) const;
	void alter();
	void compact(byte *p);
	void enter_key_above_leaf(Glass::LeafItem previtem, Glass::LeafItem newitem);
	void enter_key_above_branch(int j, Glass::BItem newitem);
	int mid_point(byte *p) const;
	void add_item_to_leaf(byte *p, Glass::LeafItem kt, int c);
	void add_item_to_branch(byte *p, Glass::BItem kt, int c);
	void add_leaf_item(Glass::LeafItem kt);
	void add_branch_item(Glass::BItem kt, int j);
	void delete_leaf_item(bool repeatedly);
	void delete_branch_item(int j);
	int add_kt(bool found);
	void read_root();
	void split_root(uint4 split_n);
	void form_key(const std::string & key) const;

	/// The name of the table (used when writing changesets).
	const char * tablename;

	/** revision number of the opened B-tree. */
	glass_revision_number_t revision_number;

	/** keeps a count of the number of items in the B-tree. */
	glass_tablesize_t item_count;

	/** block size of the B tree in bytes */
	unsigned int block_size;

	/** Flags like DB_NO_SYNC and DB_DANGEROUS. */
	int flags;

	/** true if the root block is faked (not written to disk).
	 * false otherwise.  This is true when the btree hasn't been
	 * modified yet.
	 */
	bool faked_root_block;

	/** true iff the data has been written in a single write in
	 * sequential order.
	 */
	bool sequential;

	/** File descriptor of the table.
	 *
	 *  If close() has been called, this will be -2.
	 *
	 *  If the table is lazily created and doesn't yet exist, this will be
	 *  -1 (for a multi-file database) or -3-fd (for a single-file database).
	 */
	int handle;

	/// number of levels, counting from 0
	int level;

	/// the root block of the B-tree
	uint4 root;

	/// buffer of size block_size for making up key-tag items
	mutable Glass::LeafItem_wr kt;

	/// buffer of size block_size for reforming blocks
	byte * buffer;

	/// List of free blocks.
	GlassFreeList free_list;

	/** The path name of the B tree.
	 *
	 *  For a single-file database, this will be empty.
	 */
	std::string name;

	/** count of the number of successive instances of purely
	 * sequential addition, starting at SEQ_START_POINT (neg) and
	 * going up to zero. */
	int seq_count;

	/** the last block to be changed by an addition */
	uint4 changed_n;

	/** directory offset corresponding to last block to be changed
	 *  by an addition */
	int changed_c;

	/// maximum size of an item (key-tag pair)
	size_t max_item_size;

	/// Set to true the first time the B-tree is modified.
	mutable bool Btree_modified;

	/// set to true when full compaction is to be achieved
	bool full_compaction;

	/// Set to true when the database is opened to write.
	bool writable;

	/// Flag for tracking when cursors need to rebuild.
	mutable bool cursor_created_since_last_modification;

	/// Version count for tracking when cursors need to rebuild.
	unsigned long cursor_version;

	/** The GlassChanges object to write block changes to.
	 *
	 *  If NULL, no changes will be written.
	 */
	GlassChanges * changes_obj;

	bool single_file() const {
	    return name.empty();
	}

	/* B-tree navigation functions */
	bool prev(Glass::Cursor *C_, int j) const {
	    if (sequential && !single_file())
		return prev_for_sequential(C_, j);
	    return prev_default(C_, j);
	}

	bool next(Glass::Cursor *C_, int j) const {
	    if (sequential) return next_for_sequential(C_, j);
	    return next_default(C_, j);
	}

	/* Default implementations. */
	bool prev_default(Glass::Cursor *C_, int j) const;
	bool next_default(Glass::Cursor *C_, int j) const;

	/* Implementations for sequential mode. */
	bool prev_for_sequential(Glass::Cursor *C_, int dummy) const;
	bool next_for_sequential(Glass::Cursor *C_, int dummy) const;

	static int find_in_leaf(const byte * p, Glass::LeafItem item, int c, bool& exact);
	static int find_in_branch(const byte * p, Glass::LeafItem item, int c);
	static int find_in_branch(const byte * p, Glass::BItem item, int c);

	/** block_given_by(p, c) finds the item at block address p, directory
	 *  offset c, and returns its tag value as an integer.
	 */
	static uint4 block_given_by(const byte * p, int c);

	mutable Glass::Cursor C[Glass::BTREE_CURSOR_LEVELS];

	/** Buffer used when splitting a block.
	 *
	 *  This buffer holds the split off part of the block.  It's only used
	 *  when updating (in GlassTable::add_item().
	 */
	byte * split_p;

	/** Minimum size tag to try compressing (0 for no compression). */
	uint4 compress_min;

	mutable CompressionStream comp_stream;

	/// If true, don't create the table until it's needed.
	bool lazy;

	/// Last block readahead_key() preread.
	mutable uint4 last_readahead;

	/// offset to start of table in file.
	off_t offset;

	/* Debugging methods */
//	void report_block_full(int m, int n, const byte * p);
};

namespace Glass {

/** Compare two items by their keys.

   The result is negative if a precedes b, positive is b precedes a, and
   0 if a and b are equal.  The comparison is for byte sequence collating
   order, taking lengths into account. So if the keys are made up of lower case
   ASCII letters we get alphabetical ordering.

   Now remember that items are added into the B-tree in fastest time
   when they are preordered by their keys. This is therefore the piece
   of code that needs to be followed to arrange for the preordering.

   Note that keys have two parts - a string value and a "component_of" count.
   If the string values are equal, the comparison is made based on
   "component_of".
*/

template<typename ITEM1, typename ITEM2>
int compare(ITEM1 a, ITEM2 b)
{
    Key key1 = a.key();
    Key key2 = b.key();
    const byte* p1 = key1.data();
    const byte* p2 = key2.data();
    int key1_len = key1.length();
    int key2_len = key2.length();
    int k_smaller = (key2_len < key1_len ? key2_len : key1_len);

    // Compare the common part of the keys.
    int diff = std::memcmp(p1, p2, k_smaller);
    if (diff == 0) {
	// If the common part matches, compare the lengths.
	diff = key1_len - key2_len;
	if (diff == 0) {
	    // If the strings match, compare component_of().
	    diff = a.component_of() - b.component_of();
	}
    }
    return diff;
}

/** Compare two BItem objects by their keys.
 *
 *  Specialisation for comparing two BItems, where component_of is always
 *  explicitly stored.
 */
inline int
compare(BItem a, BItem b)
{
    Key key1 = a.key();
    Key key2 = b.key();
    const byte* p1 = key1.data();
    const byte* p2 = key2.data();
    int key1_len = key1.length();
    int key2_len = key2.length();
    if (key1_len == key2_len) {
	// The keys are the same length, so we can compare the counts in the
	// same operation since they're stored as 2 byte bigendian numbers.
	int len = key1_len + X2;
	return std::memcmp(p1, p2, len);
    }

    int k_smaller = (key2_len < key1_len ? key2_len : key1_len);

    // Compare the common part of the keys.
    int diff = std::memcmp(p1, p2, k_smaller);
    if (diff == 0) {
	// If the common part matches, compare the lengths.
	diff = key1_len - key2_len;
	// We dealt with the "same length" case above so we never need to check
	// component_of here.
    }
    return diff;
}

}

#endif /* OM_HGUARD_GLASS_TABLE_H */