1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
|
import logging
import os
import pdb
import re
import dask
import fsspec
import numpy as np
import pandas as pd
import rasterio
import xarray as xr
import yaml
from affine import Affine
from rioxarray import rioxarray
from safe_s1 import sentinel1_xml_mappings
from safe_s1.xml_parser import XmlParser
class Sentinel1Reader:
def __init__(self, name, backend_kwargs=None):
logging.debug("input name: %s", name)
if not isinstance(name, (str, os.PathLike)):
raise ValueError(f"cannot deal with object of type {type(name)}: {name}")
# gdal dataset name
if not name.startswith("SENTINEL1_DS:"):
name = "SENTINEL1_DS:%s:" % name
self.name = name
"""Gdal dataset name"""
name_parts = self.name.split(":")
if len(name_parts) > 3:
logging.debug("windows case")
# windows might have semicolon in path ('c:\...')
name_parts[1] = ":".join(name_parts[1:-1])
del name_parts[2:-1]
name_parts[1] = os.path.basename(name_parts[1])
self.short_name = ":".join(name_parts)
logging.debug("short_name : %s", self.short_name)
"""Like name, but without path"""
if len(name_parts) == 2:
self.path = self.name.split(":")[1]
else:
self.path = ":".join(self.name.split(":")[1:-1])
logging.debug("path: %s", self.path)
# remove trailing slash in the safe path
if self.path[-1] == "/":
self.path = self.path.rstrip("/")
"""Dataset path"""
self.safe = os.path.basename(self.path)
self.path = os.fspath(self.path)
if backend_kwargs is None:
backend_kwargs = {}
storage_options = backend_kwargs.get("storage_options", {})
mapper = fsspec.get_mapper(self.path, **storage_options)
self.xml_parser = XmlParser(
xpath_mappings=sentinel1_xml_mappings.xpath_mappings,
compounds_vars=sentinel1_xml_mappings.compounds_vars,
namespaces=sentinel1_xml_mappings.namespaces,
mapper=mapper,
)
self.manifest = "manifest.safe"
if "SLC" in self.path or "GRD" in self.path:
self.manifest_attrs = self.xml_parser.get_compound_var(
self.manifest, "safe_attributes_slcgrd"
)
elif "SL2" in self.path:
self.manifest_attrs = self.xml_parser.get_compound_var(
self.manifest, "safe_attributes_sl2"
)
else:
raise Exception("case not handled")
self._safe_files = None
self._multidataset = False
"""True if multi dataset"""
self._datasets_names = list(self.safe_files["dsid"].sort_index().unique())
self.xsd_definitions = self.get_annotation_definitions()
if self.name.endswith(":") and len(self._datasets_names) == 1:
self.name = self._datasets_names[0]
self.dsid = self.name.split(":")[-1]
"""Dataset identifier (like 'WV_001', 'IW1', 'IW'), or empty string for multidataset"""
try:
self.product = os.path.basename(self.path).split("_")[2]
except ValueError:
print("path: %s" % self.path)
self.product = "XXX"
"""Product type, like 'GRDH', 'SLC', etc .."""
# submeta is a list of submeta objects if multidataset and TOPS
# this list will remain empty for _WV__SLC because it will be time-consuming to process them
# self._submeta = []
if self.short_name.endswith(":"):
self.short_name = self.short_name + self.dsid
if self.files.empty:
self._multidataset = True
self.dt = None
self._dict = {
"geolocationGrid": None,
}
if not self.multidataset:
self._dict = {
"geolocationGrid": self.geoloc,
"orbit": self.orbit,
"image": self.image,
"azimuth_fmrate": self.azimuth_fmrate,
"doppler_estimate": self.doppler_estimate,
"bursts": self.bursts,
"calibration_luts": self.get_calibration_luts,
"noise_azimuth_raw": self.get_noise_azi_raw,
"noise_range_raw": self.get_noise_range_raw,
"antenna_pattern": self.antenna_pattern,
"swath_merging": self.swath_merging,
}
self.dt = xr.DataTree.from_dict(self._dict)
assert self.dt == self.datatree
else:
print("multidataset")
# there is no error raised here, because we want to let the user access the metadata for multidatasets
def load_digital_number(
self, resolution=None, chunks=None, resampling=rasterio.enums.Resampling.rms
):
"""
load digital_number from self.sar_meta.files['measurement'], as an `xarray.Dataset`.
Parameters
----------
resolution: None, numbers.Number, str or dict
resampling: rasterio.enums.Resampling
Returns
-------
(float, xarray.Dataset)
tuple that contains resolution and dataset (possibly dual-pol), with basic coords/dims naming convention
"""
def get_glob(strlist):
# from list of str, replace diff by '?'
def _get_glob(st):
stglob = "".join(
[
"?" if len(charlist) > 1 else charlist[0]
for charlist in [list(set(charset)) for charset in zip(*st)]
]
)
return re.sub(r"\?+", "*", stglob)
strglob = _get_glob(strlist)
if strglob.endswith("*"):
strglob += _get_glob(s[::-1] for s in strlist)[::-1]
strglob = strglob.replace("**", "*")
return strglob
map_dims = {"pol": "band", "line": "y", "sample": "x"}
_dtypes = {
"latitude": "f4",
"longitude": "f4",
"incidence": "f4",
"elevation": "f4",
"altitude": "f4",
"ground_heading": "f4",
"nesz": None,
"negz": None,
"sigma0_raw": None,
"gamma0_raw": None,
"noise_lut": "f4",
"noise_lut_range": "f4",
"noise_lut_azi": "f4",
"sigma0_lut": "f8",
"gamma0_lut": "f8",
"azimuth_time": np.datetime64,
"slant_range_time": None,
}
if resolution is not None:
comment = 'resampled at "%s" with %s.%s.%s' % (
resolution,
resampling.__module__,
resampling.__class__.__name__,
resampling.name,
)
else:
comment = "read at full resolution"
# Add root to path
files_measurement = self.files["measurement"].copy()
files_measurement = [os.path.join(self.path, f) for f in files_measurement]
# arbitrary rio object, to get shape, etc ... (will not be used to read data)
rio = rasterio.open(files_measurement[0])
chunks["pol"] = 1
# sort chunks keys like map_dims
chunks = dict(
sorted(
chunks.items(), key=lambda pair: list(map_dims.keys()).index(pair[0])
)
)
chunks_rio = {map_dims[d]: chunks[d] for d in map_dims.keys()}
res = None
if resolution is None:
# using tiff driver: need to read individual tiff and concat them
# riofiles['rio'] is ordered like self.sar_meta.manifest_attrs['polarizations']
dn = xr.concat(
[
rioxarray.open_rasterio(
f, chunks=chunks_rio, parse_coordinates=False
)
for f in files_measurement
],
"band",
).assign_coords(
band=np.arange(len(self.manifest_attrs["polarizations"])) + 1
)
# set dimensions names
dn = dn.rename(dict(zip(map_dims.values(), map_dims.keys())))
# create coordinates from dimension index (because of parse_coordinates=False)
dn = dn.assign_coords({"line": dn.line, "sample": dn.sample})
dn = dn.drop_vars("spatial_ref", errors="ignore")
else:
if not isinstance(resolution, dict):
if isinstance(resolution, str) and resolution.endswith("m"):
resolution = float(resolution[:-1])
res = resolution
resolution = dict(
line=resolution / self.pixel_line_m,
sample=resolution / self.pixel_sample_m,
)
# resolution = dict(line=resolution / self.dataset['sampleSpacing'].values,
# sample=resolution / self.dataset['lineSpacing'].values)
# resample the DN at gdal level, before feeding it to the dataset
out_shape = (
int(rio.height / resolution["line"]),
int(rio.width / resolution["sample"]),
)
out_shape_pol = (1,) + out_shape
# read resampled array in one chunk, and rechunk
# this doesn't optimize memory, but total size remain quite small
if isinstance(resolution["line"], int):
# legacy behaviour: winsize is the maximum full image size that can be divided by resolution (int)
winsize = (
0,
0,
rio.width // resolution["sample"] * resolution["sample"],
rio.height // resolution["line"] * resolution["line"],
)
window = rasterio.windows.Window(*winsize)
else:
window = None
dn = xr.concat(
[
xr.DataArray(
dask.array.from_array(
rasterio.open(f).read(
out_shape=out_shape_pol,
resampling=resampling,
window=window,
),
chunks=chunks_rio,
),
dims=tuple(map_dims.keys()),
coords={"pol": [pol]},
)
for f, pol in zip(
files_measurement, self.manifest_attrs["polarizations"]
)
],
"pol",
).chunk(chunks)
# create coordinates at box center
translate = Affine.translation(
(resolution["sample"] - 1) / 2, (resolution["line"] - 1) / 2
)
scale = Affine.scale(
rio.width // resolution["sample"] * resolution["sample"] / out_shape[1],
rio.height // resolution["line"] * resolution["line"] / out_shape[0],
)
sample, _ = translate * scale * (dn.sample, 0)
_, line = translate * scale * (0, dn.line)
dn = dn.assign_coords({"line": line, "sample": sample})
# for GTiff driver, pols are already ordered. just rename them
# fix 2 June 2025: https://github.com/umr-lops/xsar/issues/254
polas = [str(uu) for uu in self.manifest_attrs["polarizations"]]
dn = dn.assign_coords(pol=polas)
if not all(self.denoised.values()):
descr = "denoised"
else:
descr = "not denoised"
var_name = "digital_number"
dn.attrs = {
"comment": "%s digital number, %s" % (descr, comment),
"history": yaml.safe_dump(
{
var_name: get_glob(
[p.replace(self.path + "/", "") for p in files_measurement]
)
}
),
}
ds = dn.to_dataset(name=var_name)
astype = _dtypes.get(var_name)
if astype is not None:
ds = ds.astype(_dtypes[var_name])
return res, ds
@property
def pixel_line_m(self):
"""
pixel line spacing, in meters (at sensor level)
Returns
-------
xarray.Dataset
Sample spacing
"""
if self.multidataset:
res = None # not defined for multidataset
else:
res = self.image["azimuthPixelSpacing"]
return res
@property
def pixel_sample_m(self):
"""
pixel sample spacing, in meters (at sensor level)
Returns
-------
xarray.Dataset
Sample spacing
"""
if self.multidataset:
res = None # not defined for multidataset
else:
res = self.image["groundRangePixelSpacing"]
return res
@property
def datasets_names(self):
"""
Alias to `Sentinel1Reader._datasets_names`
Returns
-------
list
datasets names
"""
return self._datasets_names
@property
def datatree(self):
"""
Return data of the reader as datatree. Can't open data from a multiple dataset (must select a single one with
displayed in `Sentinel1Reader.datasets_names`). So if multiple dataset, returns None.
Alias to `Sentinel1Reader.dt`.
Returns
-------
xr.DataTree
Contains data from the reader
"""
return self.dt
@property
def geoloc(self):
"""
xarray.Dataset with `['longitude', 'latitude', 'altitude', 'azimuth_time', 'slant_range_time','incidence','elevation' ]` variables
and `['line', 'sample']` coordinates, at the geolocation grid
Returns
-------
xarray.Dataset
Geolocation Grid
"""
if self.multidataset:
raise TypeError("geolocation_grid not available for multidataset")
if self._dict["geolocationGrid"] is None:
xml_annotation = self.files["annotation"].iloc[0]
da_var_list = []
for var_name in [
"longitude",
"latitude",
"height",
"azimuthTime",
"slantRangeTime",
"incidenceAngle",
"elevationAngle",
]:
# TODO: we should use dask.array.from_delayed so xml files are read on demand
da_var = self.xml_parser.get_compound_var(xml_annotation, var_name)
da_var.name = var_name
da_var.attrs["history"] = self.xml_parser.get_compound_var(
self.files["annotation"].iloc[0], var_name, describe=True
)
da_var_list.append(da_var)
return xr.merge(da_var_list)
@property
def orbit(self):
"""
orbit, as a geopandas.GeoDataFrame, with columns:
- 'velocity' : shapely.geometry.Point with velocity in x, y, z direction
- 'geometry' : shapely.geometry.Point with position in x, y, z direction
crs is set to 'geocentric'
attrs keys:
- 'orbit_pass': 'Ascending' or 'Descending'
- 'platform_heading': in degrees, relative to north
Notes
-----
orbit is longer than the SAFE, because it belongs to all datatakes, not only this slice
"""
if self.multidataset:
return None # not defined for multidataset
gdf_orbit = self.xml_parser.get_compound_var(
self.files["annotation"].iloc[0], "orbit"
)
for vv in gdf_orbit:
if vv in self.xsd_definitions:
gdf_orbit[vv].attrs["definition"] = self.xsd_definitions[vv]
gdf_orbit.attrs["history"] = self.xml_parser.get_compound_var(
self.files["annotation"].iloc[0], "orbit", describe=True
)
return gdf_orbit
@property
def denoised(self):
"""
dict with pol as key, and bool as values (True is DN is predenoised at L1 level)
Returns
-------
None | dict
"""
if self.multidataset:
return None # not defined for multidataset
else:
return dict(
[
self.xml_parser.get_compound_var(f, "denoised")
for f in self.files["annotation"]
]
)
@property
def time_range(self):
"""
Get time range
Returns
-------
"""
if not self.multidataset:
return self.xml_parser.get_var(
self.files["annotation"].iloc[0], "annotation.line_time_range"
)
@property
def image(self):
"""
Get image information
Returns
-------
xarray.Dataset
Image information dataArrays
"""
if self.multidataset:
return None
img_dict = self.xml_parser.get_compound_var(
self.files["annotation"].iloc[0], "image"
)
img_dict["history"] = self.xml_parser.get_compound_var(
self.files["annotation"].iloc[0], "image", describe=True
)
for vv in img_dict:
if vv in self.xsd_definitions:
img_dict[vv].attrs["definition"] = self.xsd_definitions[vv]
return img_dict
@property
def azimuth_fmrate(self):
"""
Returns
-------
xarray.Dataset
Frequency Modulation rate annotations such as t0 (azimuth time reference) and polynomial coefficients: Azimuth FM rate = c0 + c1(tSR - t0) + c2(tSR - t0)^2
"""
fmrates = self.xml_parser.get_compound_var(
self.files["annotation"].iloc[0], "azimuth_fmrate"
)
fmrates.attrs["history"] = self.xml_parser.get_compound_var(
self.files["annotation"].iloc[0], "azimuth_fmrate", describe=True
)
for vv in fmrates:
if vv in self.xsd_definitions:
fmrates[vv].attrs["definition"] = self.xsd_definitions[vv]
return fmrates
@property
def doppler_estimate(self):
"""
Returns
-------
xarray.Dataset
with Doppler Centroid Estimates from annotations such as geo_polynom,data_polynom or frequency
"""
dce = self.xml_parser.get_compound_var(
self.files["annotation"].iloc[0], "doppler_estimate"
)
for vv in dce:
if vv in self.xsd_definitions:
dce[vv].attrs["definition"] = self.xsd_definitions[vv]
dce.attrs["history"] = self.xml_parser.get_compound_var(
self.files["annotation"].iloc[0], "doppler_estimate", describe=True
)
return dce
@property
def bursts(self):
"""
Get bursts information
Returns
-------
xarray.Dataset
Bursts information dataArrays
"""
if (
self.xml_parser.get_var(
self.files["annotation"].iloc[0], "annotation.number_of_bursts"
)
> 0
):
bursts = self.xml_parser.get_compound_var(
self.files["annotation"].iloc[0], "bursts"
)
for vv in bursts:
if vv in self.xsd_definitions:
bursts[vv].attrs["definition"] = self.xsd_definitions[vv]
bursts.attrs["history"] = self.xml_parser.get_compound_var(
self.files["annotation"].iloc[0], "bursts", describe=True
)
return bursts
else:
bursts = self.xml_parser.get_compound_var(
self.files["annotation"].iloc[0], "bursts_grd"
)
bursts.attrs["history"] = self.xml_parser.get_compound_var(
self.files["annotation"].iloc[0], "bursts_grd", describe=True
)
return bursts
@property
def antenna_pattern(self):
ds = self.xml_parser.get_compound_var(
self.files["annotation"].iloc[0], "antenna_pattern"
)
ds.attrs["history"] = self.xml_parser.get_compound_var(
self.files["annotation"].iloc[0], "antenna_pattern", describe=True
)
return ds
@property
def swath_merging(self):
if "GRD" in self.product:
ds = self.xml_parser.get_compound_var(
self.files["annotation"].iloc[0], "swath_merging"
)
ds.attrs["history"] = self.xml_parser.get_compound_var(
self.files["annotation"].iloc[0], "swath_merging", describe=True
)
else:
ds = xr.Dataset()
return ds
@property
def multidataset(self):
"""
Alias to `Sentinel1Reader._multidataset`
Returns
-------
bool
"""
return self._multidataset
def get_annotation_definitions(self):
"""
Get annotation definitions (paths used to retrieve concerned data in the files)
Returns
-------
dict
annotations definitions
"""
final_dict = {}
ds_path_xsd = self.xml_parser.get_compound_var(self.manifest, "xsd_files")
path_xsd = ds_path_xsd["xsd_product"].values[0]
full_path_xsd = os.path.join(self.path, path_xsd)
if os.path.exists(full_path_xsd):
rootxsd = self.xml_parser.getroot(path_xsd)
mypath = "/xsd:schema/xsd:complexType/xsd:sequence/xsd:element"
for lulu, uu in enumerate(
rootxsd.xpath(mypath, namespaces=sentinel1_xml_mappings.namespaces)
):
mykey = uu.values()[0]
if uu.getchildren() != []:
myvalue = uu.getchildren()[0].getchildren()[0]
else:
myvalue = None
final_dict[mykey] = myvalue
return final_dict
@property
def get_calibration_luts(self):
"""
get original (ie not interpolation) xr.Dataset sigma0 and gamma0 Look Up Tables to apply calibration
Returns
-------
xarray.Dataset
Original sigma0 and gamma0 calibration Look Up Tables
"""
# sigma0_lut = self.xml_parser.get_var(self.files['calibration'].iloc[0], 'calibration.sigma0_lut',describe=True)
pols = []
tmp = []
for pol_code, xml_file in self.files["calibration"].items():
luts_ds = self.xml_parser.get_compound_var(xml_file, "luts_raw")
# add history to attributes
minifile = re.sub(".*SAFE/", "", xml_file)
minifile = re.sub(r"-.*\.xml", ".xml", minifile)
for da in luts_ds:
histo = self.xml_parser.get_var(
xml_file, f"calibration.{da}", describe=True
)
luts_ds[da].attrs["history"] = yaml.safe_dump({da: {minifile: histo}})
pol = os.path.basename(xml_file).split("-")[4].upper()
pols.append(pol)
tmp.append(luts_ds)
ds = xr.concat(tmp, pd.Index(pols, name="pol"))
# ds.attrs = {'description':
# 'original (ie not interpolation) xr.Dataset sigma0 and gamma0 Look Up Tables'}
return ds
@property
def get_noise_azi_raw(self):
"""
Get raw noise azimuth lut
Returns
-------
xarray.Dataset
raw noise azimuth lut
"""
tmp = []
pols = []
history = []
for pol_code, xml_file in self.files["noise"].items():
pol = os.path.basename(xml_file).split("-")[4].upper()
pols.append(pol)
if self.product == "SLC" or self.product == "SL2":
noise_lut_azi_raw_ds = self.xml_parser.get_compound_var(
xml_file, "noise_lut_azi_raw_slc"
)
history.append(
self.xml_parser.get_compound_var(
xml_file, "noise_lut_azi_raw_slc", describe=True
)
)
else:
noise_lut_azi_raw_ds = self.xml_parser.get_compound_var(
xml_file, "noise_lut_azi_raw_grd"
)
# noise_lut_azi_raw_ds.attrs[f'raw_azi_lut_{pol}'] = \
# self.xml_parser.get_var(xml_file, 'noise.azi.noiseLut')
history.append(
self.xml_parser.get_compound_var(
xml_file, "noise_lut_azi_raw_grd", describe=True
)
)
for vari in noise_lut_azi_raw_ds:
if "noise_lut" in vari:
varitmp = "noiseLut"
hihi = self.xml_parser.get_var(
self.files["noise"].iloc[0],
"noise.azi.%s" % varitmp,
describe=True,
)
elif vari == "noise_lut" and self.product == "WV": # WV case
hihi = "dummy variable, noise is not defined in azimuth for WV acquisitions"
else:
varitmp = vari
hihi = self.xml_parser.get_var(
self.files["noise"].iloc[0],
"noise.azi.%s" % varitmp,
describe=True,
)
noise_lut_azi_raw_ds[vari].attrs["description"] = hihi
tmp.append(noise_lut_azi_raw_ds)
ds = xr.concat(tmp, pd.Index(pols, name="pol"))
ds.attrs["history"] = "\n".join(history)
return ds
@property
def get_noise_range_raw(self):
"""
Get raw noise range lut
Returns
-------
xarray.Dataset
raw noise range lut
"""
tmp = []
pols = []
history = []
for pol_code, xml_file in self.files["noise"].items():
# pol = self.files['polarization'].cat.categories[pol_code - 1]
pol = os.path.basename(xml_file).split("-")[4].upper()
pols.append(pol)
noise_lut_range_raw_ds = self.xml_parser.get_compound_var(
xml_file, "noise_lut_range_raw"
)
for vari in noise_lut_range_raw_ds:
if "noise_lut" in vari:
varitmp = "noiseLut"
hihi = self.xml_parser.get_var(
self.files["noise"].iloc[0],
"noise.range.%s" % varitmp,
describe=True,
)
noise_lut_range_raw_ds[vari].attrs["description"] = hihi
history.append(
self.xml_parser.get_compound_var(
xml_file, "noise_lut_range_raw", describe=True
)
)
tmp.append(noise_lut_range_raw_ds)
ds = xr.concat(tmp, pd.Index(pols, name="pol"))
ds.attrs["history"] = "\n".join(history)
return ds
def get_noise_azi_initial_parameters(self, pol):
"""
Retrieve initial noise lut and lines
Parameters
----------
pol: str
polarization selected
Returns
-------
(List, List, List, List, List, List, List)
Tuple that contains the swaths, noise azimuth lines, line_start, line_stop, sample_start, sample_stop and
noise azimuth lut for the pol selected.
"""
for pol_code, xml_file in self.files["noise"].items():
if pol in os.path.basename(xml_file).upper():
return (
self.xml_parser.get_var(xml_file, "noise.azi.swath"),
self.xml_parser.get_var(xml_file, "noise.azi.line"),
self.xml_parser.get_var(xml_file, "noise.azi.line_start"),
self.xml_parser.get_var(xml_file, "noise.azi.line_stop"),
self.xml_parser.get_var(xml_file, "noise.azi.sample_start"),
self.xml_parser.get_var(xml_file, "noise.azi.sample_stop"),
self.xml_parser.get_var(xml_file, "noise.azi.noiseLut"),
)
@property
def safe_files(self):
"""
Files and polarizations for whole SAFE.
The index is the file number, extracted from the filename.
To get files in official SAFE order, the resulting dataframe should be sorted by polarization or index.
Returns
-------
pandas.core.frame.DataFrame
Columns:
* index : file number, extracted from the filename.
* dsid : dataset id, compatible with gdal sentinel1 driver ('SENTINEL1_DS:/path/file.SAFE:WV_012')
* polarization : polarization name.
* annotation : xml annotation file.
* calibration : xml calibration file.
* noise : xml noise file.
* measurement : tiff measurement file.
See Also
--------
Sentinel1Reader.files
"""
if self._safe_files is None:
files = self.xml_parser.get_compound_var(self.manifest, "files")
"""
# add path
for f in ['annotation', 'measurement', 'noise', 'calibration']:
files[f] = files[f].map(lambda f: os.path.join(# self.path,
f))"""
# set "polarization" as a category, so sorting dataframe on polarization
# will return the dataframe in same order as self._safe_attributes['polarizations']
files["polarization"] = files.polarization.astype(
"category"
).cat.reorder_categories(self.manifest_attrs["polarizations"], ordered=True)
# replace 'dsid' with full path, compatible with gdal sentinel1 driver
files["dsid"] = files["dsid"].map(
lambda dsid: "SENTINEL1_DS:%s:%s" % (self.path, dsid)
)
files.sort_values("polarization", inplace=True)
self._safe_files = files
return self._safe_files
@property
def files(self):
"""
Files for current dataset. (Empty for multi datasets)
See Also
--------
Sentinel1Reader.safe_files
"""
return self.safe_files[self.safe_files["dsid"] == self.name]
def __repr__(self):
if self.multidataset:
typee = "multi (%d)" % len(self.subdatasets)
else:
typee = "single"
return "<Sentinel1Reader %s object>" % typee
|