1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
|
from typing import Any, Dict, Optional
import xarray as xr
from . import esa_safe
def to_group_zarr(
product_path: esa_safe.PathType,
output_store: Any,
groups: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> None:
root = xr.open_dataset(product_path, engine="sentinel-1")
root.to_zarr(output_store, mode="w", **kwargs)
if groups is None:
groups = {g: g for g in root.attrs["subgroups"]}
for group_out, group_in in groups.items():
try:
group_ds = xr.open_dataset(
product_path, engine="sentinel-1", group=group_in
)
group_ds.to_zarr(output_store, mode="a", group=group_out, **kwargs)
except FileNotFoundError:
pass
# Apparently there is no way to save SLC images because "netcdf4" doesn't support complex data
# and "h5netcdf" crashes on an issue related to dimension names
def to_group_netcdf(
product_path: esa_safe.PathType,
output_store: str,
groups: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> None:
root = xr.open_dataset(product_path, engine="sentinel-1")
root.to_netcdf(output_store, mode="w", **kwargs)
if groups is None:
groups = {g: g for g in root.attrs["subgroups"]}
for group_out, group_in in groups.items():
try:
group_ds = xr.open_dataset(
product_path, engine="sentinel-1", group=group_in
)
group_ds.to_netcdf(output_store, mode="a", group=group_out, **kwargs)
except FileNotFoundError:
pass
|