1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
/*
* sunpos.c
* kirk johnson
* july 1993
*
* code for calculating the position on the earth's surface for which
* the sun is directly overhead (adapted from _practical astronomy
* with your calculator, third edition_, peter duffett-smith,
* cambridge university press, 1988.)
*
* RCS $Id: sunpos.c,v 1.4 1995/09/24 00:51:03 tuna Exp $
*
* Copyright (C) 1989, 1990, 1993, 1994, 1995 Kirk Lauritz Johnson
*
* Parts of the source code (as marked) are:
* Copyright (C) 1989, 1990, 1991 by Jim Frost
* Copyright (C) 1992 by Jamie Zawinski <jwz@lucid.com>
*
* Permission to use, copy, modify and freely distribute xearth for
* non-commercial and not-for-profit purposes is hereby granted
* without fee, provided that both the above copyright notice and this
* permission notice appear in all copies and in supporting
* documentation.
*
* Unisys Corporation holds worldwide patent rights on the Lempel Zev
* Welch (LZW) compression technique employed in the CompuServe GIF
* image file format as well as in other formats. Unisys has made it
* clear, however, that it does not require licensing or fees to be
* paid for freely distributed, non-commercial applications (such as
* xearth) that employ LZW/GIF technology. Those wishing further
* information about licensing the LZW patent should contact Unisys
* directly at (lzw_info@unisys.com) or by writing to
*
* Unisys Corporation
* Welch Licensing Department
* M/S-C1SW19
* P.O. Box 500
* Blue Bell, PA 19424
*
* The author makes no representations about the suitability of this
* software for any purpose. It is provided "as is" without express or
* implied warranty.
*
* THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS,
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, INDIRECT
* OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
* LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
* NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "xearth.h"
#include "kljcpyrt.h"
#define TWOPI (2*M_PI)
/*
* the epoch upon which these astronomical calculations are based is
* 1990 january 0.0, 631065600 seconds since the beginning of the
* "unix epoch" (00:00:00 GMT, Jan. 1, 1970)
*
* given a number of seconds since the start of the unix epoch,
* DaysSinceEpoch() computes the number of days since the start of the
* astronomical epoch (1990 january 0.0)
*/
#define EpochStart (631065600)
#define DaysSinceEpoch(secs) (((secs)-EpochStart)*(1.0/(24*3600)))
/*
* assuming the apparent orbit of the sun about the earth is circular,
* the rate at which the orbit progresses is given by RadsPerDay --
* TWOPI radians per orbit divided by 365.242191 days per year:
*/
#define RadsPerDay (TWOPI/365.242191)
/*
* details of sun's apparent orbit at epoch 1990.0 (after
* duffett-smith, table 6, section 46)
*
* Epsilon_g (ecliptic longitude at epoch 1990.0) 279.403303 degrees
* OmegaBar_g (ecliptic longitude of perigee) 282.768422 degrees
* Eccentricity (eccentricity of orbit) 0.016713
*/
#define Epsilon_g (279.403303*(TWOPI/360))
#define OmegaBar_g (282.768422*(TWOPI/360))
#define Eccentricity (0.016713)
/*
* MeanObliquity gives the mean obliquity of the earth's axis at epoch
* 1990.0 (computed as 23.440592 degrees according to the method given
* in duffett-smith, section 27)
*/
#define MeanObliquity (23.440592*(TWOPI/360))
static double solve_keplers_equation _P((double));
static double sun_ecliptic_longitude _P((time_t));
static void ecliptic_to_equatorial _P((double, double, double *, double *));
static double julian_date _P((int, int, int));
static double GST _P((time_t));
/*
* solve Kepler's equation via Newton's method
* (after duffett-smith, section 47)
*/
static double solve_keplers_equation(M)
double M;
{
double E;
double delta;
E = M;
while (1)
{
delta = E - Eccentricity*sin(E) - M;
if (fabs(delta) <= 1e-10) break;
E -= delta / (1 - Eccentricity*cos(E));
}
return E;
}
/*
* compute ecliptic longitude of sun (in radians)
* (after duffett-smith, section 47)
*/
static double sun_ecliptic_longitude(ssue)
time_t ssue; /* seconds since unix epoch */
{
double D, N;
double M_sun, E;
double v;
D = DaysSinceEpoch(ssue);
N = RadsPerDay * D;
N = fmod(N, TWOPI);
if (N < 0) N += TWOPI;
M_sun = N + Epsilon_g - OmegaBar_g;
if (M_sun < 0) M_sun += TWOPI;
E = solve_keplers_equation(M_sun);
v = 2 * atan(sqrt((1+Eccentricity)/(1-Eccentricity)) * tan(E/2));
return (v + OmegaBar_g);
}
/*
* convert from ecliptic to equatorial coordinates
* (after duffett-smith, section 27)
*/
static void ecliptic_to_equatorial(lambda, beta, alpha, delta)
double lambda; /* ecliptic longitude */
double beta; /* ecliptic latitude */
double *alpha; /* (return) right ascension */
double *delta; /* (return) declination */
{
double sin_e, cos_e;
sin_e = sin(MeanObliquity);
cos_e = cos(MeanObliquity);
*alpha = atan2(sin(lambda)*cos_e - tan(beta)*sin_e, cos(lambda));
*delta = asin(sin(beta)*cos_e + cos(beta)*sin_e*sin(lambda));
}
/*
* computing julian dates (assuming gregorian calendar, thus this is
* only valid for dates of 1582 oct 15 or later)
* (after duffett-smith, section 4)
*/
static double julian_date(y, m, d)
int y; /* year (e.g. 19xx) */
int m; /* month (jan=1, feb=2, ...) */
int d; /* day of month */
{
int A, B, C, D;
double JD;
/* lazy test to ensure gregorian calendar */
assert(y >= 1583);
if ((m == 1) || (m == 2))
{
y -= 1;
m += 12;
}
A = y / 100;
B = 2 - A + (A / 4);
C = 365.25 * y;
D = 30.6001 * (m + 1);
JD = B + C + D + d + 1720994.5;
return JD;
}
/*
* compute greenwich mean sidereal time (GST) corresponding to a given
* number of seconds since the unix epoch
* (after duffett-smith, section 12)
*/
static double GST(ssue)
time_t ssue; /* seconds since unix epoch */
{
double JD;
double T, T0;
double UT;
struct tm *tm;
tm = gmtime(&ssue);
JD = julian_date(tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday);
T = (JD - 2451545) / 36525;
T0 = ((T + 2.5862e-5) * T + 2400.051336) * T + 6.697374558;
T0 = fmod(T0, 24.0);
if (T0 < 0) T0 += 24;
UT = tm->tm_hour + (tm->tm_min + tm->tm_sec / 60.0) / 60.0;
T0 += UT * 1.002737909;
T0 = fmod(T0, 24.0);
if (T0 < 0) T0 += 24;
return T0;
}
/*
* given a particular time (expressed in seconds since the unix
* epoch), compute position on the earth (lat, lon) such that sun is
* directly overhead.
*/
void sun_position(ssue, lat, lon)
time_t ssue; /* seconds since unix epoch */
double *lat; /* (return) latitude */
double *lon; /* (return) longitude */
{
double lambda;
double alpha, delta;
double tmp;
lambda = sun_ecliptic_longitude(ssue);
ecliptic_to_equatorial(lambda, 0.0, &alpha, &delta);
tmp = alpha - (TWOPI/24)*GST(ssue);
if (tmp < -M_PI)
{
do tmp += TWOPI;
while (tmp < -M_PI);
}
else if (tmp > M_PI)
{
do tmp -= TWOPI;
while (tmp < -M_PI);
}
*lon = tmp * (360/TWOPI);
*lat = delta * (360/TWOPI);
}
|