1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
;;; regexp-opt.el --- generate efficient regexps to match strings.
;; Copyright (C) 1994, 1995, 1996, 1997 Free Software Foundation, Inc.
;; Author: Simon Marshall <simon@gnu.ai.mit.edu>
;; Keywords: strings, regexps
;; Modified by Karl M. Hegbloom Sep. 1997 to support the new regexp syntax
;; with shy groups. (benchmarks pending)
;; This file is part of XEmacs.
;; XEmacs is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 2, or (at your option)
;; any later version.
;; XEmacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with XEmacs; see the file COPYING. If not, write to the
;; Free Software Foundation, Inc., 59 Temple Place - Suite 330,
;; Boston, MA 02111-1307, USA.
;;; Commentary:
;; The "opt" in "regexp-opt" stands for "optim\\(al\\|i\\(se\\|ze\\)\\)".
;;
;; This package generates a regexp from a given list of strings (which matches
;; one of those strings) so that the regexp generated by:
;;
;; (regexp-opt strings)
;;
;; is equivalent to, but more efficient than, the regexp generated by:
;;
;; (mapconcat 'regexp-quote strings "\\|")
;;
;; For example:
;;
;; (let ((strings '("cond" "if" "when" "unless" "while"
;; "let" "let*" "progn" "prog1" "prog2"
;; "save-restriction" "save-excursion" "save-window-excursion"
;; "save-current-buffer" "save-match-data"
;; "catch" "throw" "unwind-protect" "condition-case")))
;; (concat "(" (regexp-opt strings t) "\\>"))
;;
;; => "(\\(?:c\\(?:atch\\|ond\\(?:ition-case\\)?\\)\\|if\\|let\\*?\\|prog[12n]\\|save-\\(?:current-buffer\\|excursion\\|match-data\\|restriction\\|window-excursion\\)\\|throw\\|un\\(?:less\\|wind-protect\\)\\|wh\\(?:en\\|ile\\)\\)\\>"
;;
;;
;; (let ((strings '("cond" "if" "when" "unless" "while"
;; "let" "let*" "progn" "prog1" "prog2"
;; "save-restriction" "save-excursion" "save-window-excursion"
;; "save-current-buffer" "save-match-data"
;; "catch" "throw" "unwind-protect" "condition-case")))
;; (concat "(" (regexp-opt strings t t) "\\>"))
;; ^
;; => "(\\(c\\(atch\\|ond\\(ition-case\\)?\\)\\|if\\|let\\*?\\|prog[12n]\\|save-\\(current-buffer\\|excursion\\|match-data\\|restriction\\|window-excursion\\)\\|throw\\|un\\(less\\|wind-protect\\)\\|wh\\(en\\|ile\\)\\)\\>"
;;
;;
;; Searching using the above example `regexp-opt' regexp takes approximately
;; two-thirds of the time taken using the equivalent `mapconcat' regexp.
;; Since this package was written to produce efficient regexps, not regexps
;; efficiently, it is probably not a good idea to in-line too many calls in
;; your code, unless you use the following trick with `eval-when-compile':
;;
;; (defvar definition-regexp
;; (eval-when-compile
;; (concat "^("
;; (regexp-opt '("defun" "defsubst" "defmacro" "defalias"
;; "defvar" "defconst") t)
;; "\\>")))
;;
;; The `byte-compile' code will be as if you had defined the variable thus:
;;
;; (defvar definition-regexp
;; "^(\\(def\\(alias\\|const\\|macro\\|subst\\|un\\|var\\)\\)\\>")
;;
;; Note that if you use this trick for all instances of `regexp-opt' and
;; `regexp-opt-depth' in your code, regexp-opt.el would only have to be loaded
;; at compile time. But note also that using this trick means that should
;; regexp-opt.el be changed, perhaps to fix a bug or to add a feature to
;; improve the efficiency of `regexp-opt' regexps, you would have to recompile
;; your code for such changes to have effect in your code.
;; Originally written for font-lock.el, from an idea from Stig's hl319.el, with
;; thanks for ideas also to Michael Ernst, Bob Glickstein and Dan Nicolaescu.
;; Please don't tell me that it doesn't produce optimal regexps; I know that
;; already. For example, the above explanation for the meaning of "opt" would
;; be more efficient as "optim\\(al\\|i[sz]e\\)", but this requires complex
;; forward looking. But (ideas or) code to improve things (are) is welcome.
;;; Code:
;;;###autoload
(defun regexp-opt (strings &optional paren non-shy)
"Return a regexp to match a string in STRINGS.
Each string should be unique in STRINGS and should not contain any regexps,
quoted or not. If optional PAREN is non-nil, ensure that the returned
regexp is enclosed by at least one regexp match grouping construct. If
optional NON-SHY is non nil, the inner groupings will use \"\\\\( \\\\)\" grouping,
rather than the default \"\\\\(?: \\\\)\" 'shy', or non-match-capturing groups.
The returned regexp is typically more efficient than the equivalent regexp:
(let ((open-paren (if PAREN \"\\\\(\" \"\")) (close-paren (if PAREN \"\\\\)\" \"\")))
(concat open-paren (mapconcat 'regexp-quote STRINGS \"\\\\|\") close-paren))
but typically contains more regexp grouping constructs.
Use `regexp-opt-depth' to count them."
(save-match-data
;; Recurse on the sorted list.
(let ((max-lisp-eval-depth (* 1024 1024))
(completion-ignore-case nil))
(regexp-opt-group (sort (copy-sequence strings) 'string-lessp) paren nil non-shy))))
;;;###autoload
(defun regexp-opt-depth (regexp &optional count-shy-groups-too)
"Return the depth of REGEXP.
This means the number of regexp grouping constructs (parenthesised expressions)
in REGEXP, not counting the \"\\\\(?: \\\\)\" non-match-capturing groups unless
COUNT-SHY-GROUPS-TOO is non-nil.
See `regexp-opt'."
(save-match-data
;; Hack to signal an error if REGEXP does not have balanced parentheses.
(string-match regexp "")
;; Count the number of open parentheses in REGEXP.
(let ((max (1- (length regexp)))
(count 0) start)
(while (string-match "\\\\(" regexp start)
(setq start (match-end 0))
(when (or count-shy-groups-too
(not (string= (substring regexp start (min (+ start 2) max)) "?:")))
(setq count (1+ count))))
count)))
;;; Workhorse functions.
(eval-when-compile
(require 'cl))
(unless (fboundp 'make-bool-vector)
(defalias 'make-bool-vector 'make-vector))
(defun regexp-opt-group (strings &optional paren lax non-shy)
;;
;; Return a regexp to match a string in STRINGS.
;; If PAREN non-nil, output regexp parentheses around returned regexp.
;; If LAX non-nil, don't output parentheses if it doesn't require them.
;; If NON-SHY non-nil, don't use \\(?: \\) shy groups, use match capturing ones.
;; Merges keywords to avoid backtracking in Emacs' regexp matcher.
;;
;; The basic idea is to find the shortest common prefix, remove it and
;; recurse. If there is no prefix, we divide the list into two so that (at
;; least) one half will have at least a one-character common prefix.
;;
;; Also we delay the addition of grouping parenthesis as long as possible
;; until we're sure we need them, and try to remove one-character sequences
;; so we can use character sets rather than grouping parenthesis.
;;
(let* ((open-group (cond
((and paren non-shy) "\\(")
(paren "\\(?:")
(t "")))
(close-group (if paren "\\)" ""))
(open-charset (if lax "" open-group))
(close-charset (if lax "" close-group)))
(cond
;;
;; If there is only one string, just return it.
((= (length strings) 1)
(if (= (length (car strings)) 1)
(concat open-charset (regexp-quote (car strings)) close-charset)
(concat open-group (regexp-quote (car strings)) close-group)))
;;
;; If there is an empty string, remove it and recurse on the rest.
((= (length (car strings)) 0)
(concat open-charset
(regexp-opt-group (cdr strings) t t non-shy) "?"
close-charset))
;;
;; If all are one-character strings, just return a character set.
((= (length strings) (apply '+ (mapcar 'length strings)))
(concat open-charset
(regexp-opt-charset strings)
close-charset))
;;
;; We have a list of different length strings.
(t
(let ((prefix (try-completion "" (mapcar 'list strings)))
(letters (let ((completion-regexp-list '("^.$")))
(all-completions "" (mapcar 'list strings)))))
(cond
;;
;; If there is a common prefix, remove it and recurse on the suffixes.
((> (length prefix) 0)
(let* ((length (length prefix))
(suffixes (mapcar (lambda (s) (substring s length)) strings)))
(concat open-group
(regexp-quote prefix) (regexp-opt-group suffixes t t non-shy)
close-group)))
;;
;; If there are several one-character strings, remove them and recurse
;; on the rest (first so the final regexp finds the longest match).
((> (length letters) 1)
(let ((rest (let ((completion-regexp-list '("^..+$")))
(all-completions "" (mapcar 'list strings)))))
(concat open-group
(regexp-opt-group rest nil nil non-shy) "\\|" (regexp-opt-charset letters)
close-group)))
;;
;; Otherwise, divide the list into those that start with a particular
;; letter and those that do not, and recurse on them.
(t
(let* ((char (substring (car strings) 0 1))
(half1 (all-completions char (mapcar 'list strings)))
(half2 (nthcdr (length half1) strings)))
(concat open-group
(regexp-opt-group half1 nil nil non-shy) "\\|" (regexp-opt-group half2 nil nil non-shy)
close-group)))))))))
(defun regexp-opt-charset (chars)
;;
;; Return a regexp to match a character in CHARS.
;;
;; The basic idea is to find character ranges. Also we take care in the
;; position of character set meta characters in the character set regexp.
;;
(let* ((charwidth 256) ; Yeah, right.
;; XEmacs: use bit-vectors instead of bool-vectors
(charmap (make-bit-vector charwidth 0))
(charset "")
(bracket "") (dash "") (caret ""))
;;
;; Make a character map but extract character set meta characters.
(dolist (char (mapcar 'string-to-char chars))
(case char
(?\]
(setq bracket "]"))
(?^
(setq caret "^"))
(?-
(setq dash "-"))
(otherwise
;; XEmacs: 1
(aset charmap char 1))))
;;
;; Make a character set from the map using ranges where applicable.
(dotimes (char charwidth)
(let ((start char))
(while (and (< char charwidth)
;; XEmacs: (not (zerop ...))
(not (zerop (aref charmap char))))
(incf char))
(cond ((> char (+ start 3))
(setq charset (format "%s%c-%c" charset start (1- char))))
((> char start)
(setq charset (format "%s%c" charset (setq char start)))))))
;;
;; Make sure a caret is not first and a dash is first or last.
(if (and (string-equal charset "") (string-equal bracket ""))
(concat "[" dash caret "]")
(concat "[" bracket charset caret dash "]"))))
(provide 'regexp-opt)
;;; regexp-opt.el ends here
|