1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
|
@c -*-texinfo-*-
@c This is part of the XEmacs Lisp Reference Manual.
@c Copyright (C) 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
@c See the file lispref.texi for copying conditions.
@setfilename ../../info/display.info
@node Display, Hash Tables, Annotations, Top
@chapter Emacs Display
This chapter describes a number of other features related to the display
that XEmacs presents to the user.
@menu
* Refresh Screen:: Clearing the screen and redrawing everything on it.
* Truncation:: Folding or wrapping long text lines.
* The Echo Area:: Where messages are displayed.
* Invisible Text:: Hiding part of the buffer text.
* Selective Display:: Hiding part of the buffer text (the old way).
* Overlay Arrow:: Display of an arrow to indicate position.
* Temporary Displays:: Displays that go away automatically.
* Blinking:: How XEmacs shows the matching open parenthesis.
* Usual Display:: The usual conventions for displaying nonprinting chars.
* Display Tables:: How to specify other conventions.
* Beeping:: Audible signal to the user.
@end menu
@node Refresh Screen
@section Refreshing the Screen
The function @code{redraw-frame} redisplays the entire contents of a
given frame. @xref{Frames}.
@c Emacs 19 feature
@defun redraw-frame frame
This function clears and redisplays frame @var{frame}.
@end defun
Even more powerful is @code{redraw-display}:
@deffn Command redraw-display &optional device
This function redraws all frames on @var{device} marked as having their
image garbled. @var{device} defaults to the selected device. If
@var{device} is @code{t}, all devices will have their frames checked.
@end deffn
Processing user input takes absolute priority over redisplay. If you
call these functions when input is available, they do nothing
immediately, but a full redisplay does happen eventually---after all the
input has been processed.
Normally, suspending and resuming XEmacs also refreshes the screen.
Some terminal emulators record separate contents for display-oriented
programs such as XEmacs and for ordinary sequential display. If you are
using such a terminal, you might want to inhibit the redisplay on
resumption. @xref{Suspending XEmacs}.
@defvar no-redraw-on-reenter
@cindex suspend (cf. @code{no-redraw-on-reenter})
@cindex resume (cf. @code{no-redraw-on-reenter})
This variable controls whether XEmacs redraws the entire screen after it
has been suspended and resumed. Non-@code{nil} means yes, @code{nil}
means no.
@end defvar
@cindex display update
@cindex update display
@cindex refresh display
The above functions do not actually cause the display to be updated;
rather, they clear out the internal display records that XEmacs
maintains, so that the next time the display is updated it will be
redrawn from scratch. Normally this occurs the next time that
@code{next-event} or @code{sit-for} is called; however, a display update
will not occur if there is input pending. @xref{Command Loop}.
@deffn Command force-redisplay
@cindex force redisplay
This function causes an immediate update of the display in all
circumstances, whether or not input is pending. (This function does
not exist in FSF Emacs.)
@end deffn
@defun force-cursor-redisplay
This function causes an immediate update of the cursor on the selected
frame. (This function does not exist in FSF Emacs.)
@end defun
@node Truncation
@section Truncation
@cindex line wrapping
@cindex continuation lines
@cindex @samp{$} in display
@cindex @samp{\} in display
When a line of text extends beyond the right edge of a window, the
line can either be truncated or continued on the next line. When a line
is truncated, this is normally shown with a @samp{\} in the rightmost
column of the window on X displays, and with a @samp{$} on TTY devices.
When a line is continued or ``wrapped'' onto the next line, this is
shown with a curved arrow in the rightmost column of the window (or with
a @samp{\} on TTY devices). The additional screen lines used to display
a long text line are called @dfn{continuation} lines.
Normally, whenever line truncation is in effect for a particular
window, a horizontal scrollbar is displayed in that window if the
device supports scrollbars. @xref{Scrollbars}.
Note that continuation is different from filling; continuation happens
on the screen only, not in the buffer contents, and it breaks a line
precisely at the right margin, not at a word boundary. @xref{Filling}.
@defopt truncate-lines
This buffer-local variable controls how XEmacs displays lines that
extend beyond the right edge of the window. If it is non-@code{nil},
then XEmacs does not display continuation lines; rather each line of
text occupies exactly one screen line, and a backslash appears at the
edge of any line that extends to or beyond the edge of the window. The
default is @code{nil}.
If the variable @code{truncate-partial-width-windows} is non-@code{nil},
then truncation is always used for side-by-side windows (within one
frame) regardless of the value of @code{truncate-lines}.
@end defopt
@defopt default-truncate-lines
This variable is the default value for @code{truncate-lines}, for
buffers that do not have local values for it.
@end defopt
@defopt truncate-partial-width-windows
This variable controls display of lines that extend beyond the right
edge of the window, in side-by-side windows (@pxref{Splitting Windows}).
If it is non-@code{nil}, these lines are truncated; otherwise,
@code{truncate-lines} says what to do with them.
@end defopt
The backslash and curved arrow used to indicate truncated or continued
lines are only defaults, and can be changed. These images are actually
glyphs (@pxref{Glyphs}). XEmacs provides a great deal of flexibility
in how glyphs can be controlled. (This differs from FSF Emacs, which
uses display tables to control these images.)
For details, @ref{Redisplay Glyphs}.
@ignore Not yet in XEmacs
If your buffer contains @strong{very} long lines, and you use
continuation to display them, just thinking about them can make Emacs
redisplay slow. The column computation and indentation functions also
become slow. Then you might find it advisable to set
@code{cache-long-line-scans} to @code{t}.
@defvar cache-long-line-scans
If this variable is non-@code{nil}, various indentation and motion
functions, and Emacs redisplay, cache the results of scanning the
buffer, and consult the cache to avoid rescanning regions of the buffer
unless they are modified.
Turning on the cache slows down processing of short lines somewhat.
This variable is automatically local in every buffer.
@end defvar
@end ignore
@node The Echo Area
@section The Echo Area
@cindex error display
@cindex echo area
The @dfn{echo area} is used for displaying messages made with the
@code{message} primitive, and for echoing keystrokes. It is not the
same as the minibuffer, despite the fact that the minibuffer appears
(when active) in the same place on the screen as the echo area. The
@cite{XEmacs Reference Manual} specifies the rules for resolving conflicts
between the echo area and the minibuffer for use of that screen space
(@pxref{Minibuffer,, The Minibuffer, emacs, The XEmacs Reference Manual}).
Error messages appear in the echo area; see @ref{Errors}.
You can write output in the echo area by using the Lisp printing
functions with @code{t} as the stream (@pxref{Output Functions}), or as
follows:
@defun message string &rest arguments
This function displays a one-line message in the echo area. The
argument @var{string} is similar to a C language @code{printf} control
string. See @code{format} in @ref{String Conversion}, for the details
on the conversion specifications. @code{message} returns the
constructed string.
In batch mode, @code{message} prints the message text on the standard
error stream, followed by a newline.
@c Emacs 19 feature
If @var{string} is @code{nil}, @code{message} clears the echo area. If
the minibuffer is active, this brings the minibuffer contents back onto
the screen immediately.
@example
@group
(message "Minibuffer depth is %d."
(minibuffer-depth))
@print{} Minibuffer depth is 0.
@result{} "Minibuffer depth is 0."
@end group
@group
---------- Echo Area ----------
Minibuffer depth is 0.
---------- Echo Area ----------
@end group
@end example
@end defun
Some of the messages displayed in the echo area are also recorded in the
@samp{ *Message-Log*} buffer.
@ignore
@defopt message-log-max
This variable specifies how many lines to keep in the @samp{*Messages*}
buffer. The value @code{t} means there is no limit on how many lines to
keep. The value @code{nil} disables message logging entirely. Here's
how to display a message and prevent it from being logged:
@defopt log-message-max-size
This variable specifies how many lines to keep in the @samp{* Message-Log*}
buffer. The value @code{t} means there is no limit on how many lines to
keep. The value @code{nil} disables message logging entirely. Here's
how to display a message and prevent it from being logged:
@example
(let (message-log-max)
(message @dots{}))
@end example
@end defopt
@end ignore
@defopt log-message-max-size
This variable specifies the maximum size of @samp{* Message-Log*}
buffer.
@end defopt
@defvar echo-keystrokes
This variable determines how much time should elapse before command
characters echo. Its value must be an integer, which specifies the
number of seconds to wait before echoing. If the user types a prefix
key (such as @kbd{C-x}) and then delays this many seconds before
continuing, the prefix key is echoed in the echo area. Any subsequent
characters in the same command will be echoed as well.
If the value is zero, then command input is not echoed.
@end defvar
@defvar cursor-in-echo-area
This variable controls where the cursor appears when a message is
displayed in the echo area. If it is non-@code{nil}, then the cursor
appears at the end of the message. Otherwise, the cursor appears at
point---not in the echo area at all.
The value is normally @code{nil}; Lisp programs bind it to @code{t}
for brief periods of time.
@end defvar
@node Invisible Text
@section Invisible Text
@cindex invisible text
You can make characters @dfn{invisible}, so that they do not appear on
the screen, with the @code{invisible} property. This can be either a
text property or a property of an overlay.
In the simplest case, any non-@code{nil} @code{invisible} property makes
a character invisible. This is the default case---if you don't alter
the default value of @code{buffer-invisibility-spec}, this is how the
@code{invisibility} property works. This feature is much like selective
display (@pxref{Selective Display}), but more general and cleaner.
More generally, you can use the variable @code{buffer-invisibility-spec}
to control which values of the @code{invisible} property make text
invisible. This permits you to classify the text into different subsets
in advance, by giving them different @code{invisible} values, and
subsequently make various subsets visible or invisible by changing the
value of @code{buffer-invisibility-spec}.
Controlling visibility with @code{buffer-invisibility-spec} is
especially useful in a program to display the list of entries in a data
base. It permits the implementation of convenient filtering commands to
view just a part of the entries in the data base. Setting this variable
is very fast, much faster than scanning all the text in the buffer
looking for properties to change.
@defvar buffer-invisibility-spec
This variable specifies which kinds of @code{invisible} properties
actually make a character invisible.
@table @asis
@item @code{t}
A character is invisible if its @code{invisible} property is
non-@code{nil}. This is the default.
@item a list
Each element of the list makes certain characters invisible.
Ultimately, a character is invisible if any of the elements of this list
applies to it. The list can have two kinds of elements:
@table @code
@item @var{atom}
A character is invisible if its @code{invisible} propery value
is @var{atom} or if it is a list with @var{atom} as a member.
@item (@var{atom} . t)
A character is invisible if its @code{invisible} propery value
is @var{atom} or if it is a list with @var{atom} as a member.
Moreover, if this character is at the end of a line and is followed
by a visible newline, it displays an ellipsis.
@end table
@end table
@end defvar
Ordinarily, commands that operate on text or move point do not care
whether the text is invisible. However, the user-level line motion
commands explicitly ignore invisible newlines.
@node Selective Display
@section Selective Display
@cindex selective display
@dfn{Selective display} is a pair of features that hide certain
lines on the screen.
The first variant, explicit selective display, is designed for use in
a Lisp program. The program controls which lines are hidden by altering
the text. Outline mode has traditionally used this variant. It has
been partially replaced by the invisible text feature (@pxref{Invisible
Text}); there is a new version of Outline mode which uses that instead.
In the second variant, the choice of lines to hide is made
automatically based on indentation. This variant is designed to be a
user-level feature.
The way you control explicit selective display is by replacing a
newline (control-j) with a carriage return (control-m). The text that
was formerly a line following that newline is now invisible. Strictly
speaking, it is temporarily no longer a line at all, since only newlines
can separate lines; it is now part of the previous line.
Selective display does not directly affect editing commands. For
example, @kbd{C-f} (@code{forward-char}) moves point unhesitatingly into
invisible text. However, the replacement of newline characters with
carriage return characters affects some editing commands. For example,
@code{next-line} skips invisible lines, since it searches only for
newlines. Modes that use selective display can also define commands
that take account of the newlines, or that make parts of the text
visible or invisible.
When you write a selectively displayed buffer into a file, all the
control-m's are output as newlines. This means that when you next read
in the file, it looks OK, with nothing invisible. The selective display
effect is seen only within XEmacs.
@defvar selective-display
This buffer-local variable enables selective display. This means that
lines, or portions of lines, may be made invisible.
@itemize @bullet
@item
If the value of @code{selective-display} is @code{t}, then any portion
of a line that follows a control-m is not displayed.
@item
If the value of @code{selective-display} is a positive integer, then
lines that start with more than that many columns of indentation are not
displayed.
@end itemize
When some portion of a buffer is invisible, the vertical movement
commands operate as if that portion did not exist, allowing a single
@code{next-line} command to skip any number of invisible lines.
However, character movement commands (such as @code{forward-char}) do
not skip the invisible portion, and it is possible (if tricky) to insert
or delete text in an invisible portion.
In the examples below, we show the @emph{display appearance} of the
buffer @code{foo}, which changes with the value of
@code{selective-display}. The @emph{contents} of the buffer do not
change.
@example
@group
(setq selective-display nil)
@result{} nil
---------- Buffer: foo ----------
1 on this column
2on this column
3n this column
3n this column
2on this column
1 on this column
---------- Buffer: foo ----------
@end group
@group
(setq selective-display 2)
@result{} 2
---------- Buffer: foo ----------
1 on this column
2on this column
2on this column
1 on this column
---------- Buffer: foo ----------
@end group
@end example
@end defvar
@defvar selective-display-ellipses
If this buffer-local variable is non-@code{nil}, then XEmacs displays
@samp{@dots{}} at the end of a line that is followed by invisible text.
This example is a continuation of the previous one.
@example
@group
(setq selective-display-ellipses t)
@result{} t
---------- Buffer: foo ----------
1 on this column
2on this column ...
2on this column
1 on this column
---------- Buffer: foo ----------
@end group
@end example
You can use a display table to substitute other text for the ellipsis
(@samp{@dots{}}). @xref{Display Tables}.
@end defvar
@node Overlay Arrow
@section The Overlay Arrow
@cindex overlay arrow
The @dfn{overlay arrow} is useful for directing the user's attention
to a particular line in a buffer. For example, in the modes used for
interface to debuggers, the overlay arrow indicates the line of code
about to be executed.
@defvar overlay-arrow-string
This variable holds the string to display to call attention to a
particular line, or @code{nil} if the arrow feature is not in use.
Despite its name, the value of this variable can be either a string
or a glyph (@pxref{Glyphs}).
@end defvar
@defvar overlay-arrow-position
This variable holds a marker that indicates where to display the overlay
arrow. It should point at the beginning of a line. The arrow text
appears at the beginning of that line, overlaying any text that would
otherwise appear. Since the arrow is usually short, and the line
usually begins with indentation, normally nothing significant is
overwritten.
The overlay string is displayed only in the buffer that this marker
points into. Thus, only one buffer can have an overlay arrow at any
given time.
@c !!! overlay-arrow-position: but the overlay string may remain in the display
@c of some other buffer until an update is required. This should be fixed
@c now. Is it?
@end defvar
You can do the same job by creating an extent with a
@code{begin-glyph} property. @xref{Extent Properties}.
@node Temporary Displays
@section Temporary Displays
Temporary displays are used by commands to put output into a buffer
and then present it to the user for perusal rather than for editing.
Many of the help commands use this feature.
@defspec with-output-to-temp-buffer buffer-name forms@dots{}
This function executes @var{forms} while arranging to insert any
output they print into the buffer named @var{buffer-name}. The buffer
is then shown in some window for viewing, displayed but not selected.
The string @var{buffer-name} specifies the temporary buffer, which
need not already exist. The argument must be a string, not a buffer.
The buffer is erased initially (with no questions asked), and it is
marked as unmodified after @code{with-output-to-temp-buffer} exits.
@code{with-output-to-temp-buffer} binds @code{standard-output} to the
temporary buffer, then it evaluates the forms in @var{forms}. Output
using the Lisp output functions within @var{forms} goes by default to
that buffer (but screen display and messages in the echo area, although
they are ``output'' in the general sense of the word, are not affected).
@xref{Output Functions}.
The value of the last form in @var{forms} is returned.
@example
@group
---------- Buffer: foo ----------
This is the contents of foo.
---------- Buffer: foo ----------
@end group
@group
(with-output-to-temp-buffer "foo"
(print 20)
(print standard-output))
@result{} #<buffer foo>
---------- Buffer: foo ----------
20
#<buffer foo>
---------- Buffer: foo ----------
@end group
@end example
@end defspec
@defvar temp-buffer-show-function
If this variable is non-@code{nil}, @code{with-output-to-temp-buffer}
calls it as a function to do the job of displaying a help buffer. The
function gets one argument, which is the buffer it should display.
In Emacs versions 18 and earlier, this variable was called
@code{temp-buffer-show-hook}.
@end defvar
@defun momentary-string-display string position &optional char message
This function momentarily displays @var{string} in the current buffer at
@var{position}. It has no effect on the undo list or on the buffer's
modification status.
The momentary display remains until the next input event. If the next
input event is @var{char}, @code{momentary-string-display} ignores it
and returns. Otherwise, that event remains buffered for subsequent use
as input. Thus, typing @var{char} will simply remove the string from
the display, while typing (say) @kbd{C-f} will remove the string from
the display and later (presumably) move point forward. The argument
@var{char} is a space by default.
The return value of @code{momentary-string-display} is not meaningful.
You can do the same job in a more general way by creating an extent
with a begin-glyph property. @xref{Extent Properties}.
If @var{message} is non-@code{nil}, it is displayed in the echo area
while @var{string} is displayed in the buffer. If it is @code{nil}, a
default message says to type @var{char} to continue.
In this example, point is initially located at the beginning of the
second line:
@example
@group
---------- Buffer: foo ----------
This is the contents of foo.
@point{}Second line.
---------- Buffer: foo ----------
@end group
@group
(momentary-string-display
"**** Important Message! ****"
(point) ?\r
"Type RET when done reading")
@result{} t
@end group
@group
---------- Buffer: foo ----------
This is the contents of foo.
**** Important Message! ****Second line.
---------- Buffer: foo ----------
---------- Echo Area ----------
Type RET when done reading
---------- Echo Area ----------
@end group
@end example
This function works by actually changing the text in the buffer. As a
result, if you later undo in this buffer, you will see the message come
and go.
@end defun
@node Blinking
@section Blinking Parentheses
@cindex parenthesis matching
@cindex blinking
@cindex balancing parentheses
@cindex close parenthesis
This section describes the mechanism by which XEmacs shows a matching
open parenthesis when the user inserts a close parenthesis.
@vindex blink-paren-hook
@defvar blink-paren-function
The value of this variable should be a function (of no arguments) to
be called whenever a character with close parenthesis syntax is inserted.
The value of @code{blink-paren-function} may be @code{nil}, in which
case nothing is done.
@quotation
@strong{Please note:} This variable was named @code{blink-paren-hook} in
older Emacs versions, but since it is not called with the standard
convention for hooks, it was renamed to @code{blink-paren-function} in
version 19.
@end quotation
@end defvar
@defvar blink-matching-paren
If this variable is @code{nil}, then @code{blink-matching-open} does
nothing.
@end defvar
@defvar blink-matching-paren-distance
This variable specifies the maximum distance to scan for a matching
parenthesis before giving up.
@end defvar
@defvar blink-matching-paren-delay
This variable specifies the number of seconds for the cursor to remain
at the matching parenthesis. A fraction of a second often gives
good results, but the default is 1, which works on all systems.
@end defvar
@defun blink-matching-open
This function is the default value of @code{blink-paren-function}. It
assumes that point follows a character with close parenthesis syntax and
moves the cursor momentarily to the matching opening character. If that
character is not already on the screen, it displays the character's
context in the echo area. To avoid long delays, this function does not
search farther than @code{blink-matching-paren-distance} characters.
Here is an example of calling this function explicitly.
@smallexample
@group
(defun interactive-blink-matching-open ()
@c Do not break this line! -- rms.
@c The first line of a doc string
@c must stand alone.
"Indicate momentarily the start of sexp before point."
(interactive)
@end group
@group
(let ((blink-matching-paren-distance
(buffer-size))
(blink-matching-paren t))
(blink-matching-open)))
@end group
@end smallexample
@end defun
@node Usual Display
@section Usual Display Conventions
The usual display conventions define how to display each character
code. You can override these conventions by setting up a display table
(@pxref{Display Tables}). Here are the usual display conventions:
@itemize @bullet
@item
Character codes 32 through 126 map to glyph codes 32 through 126.
Normally this means they display as themselves.
@item
Character code 9 is a horizontal tab. It displays as whitespace
up to a position determined by @code{tab-width}.
@item
Character code 10 is a newline.
@item
All other codes in the range 0 through 31, and code 127, display in one
of two ways according to the value of @code{ctl-arrow}. If it is
non-@code{nil}, these codes map to sequences of two glyphs, where the
first glyph is the @sc{ASCII} code for @samp{^}. (A display table can
specify a glyph to use instead of @samp{^}.) Otherwise, these codes map
just like the codes in the range 128 to 255.
@item
Character codes 128 through 255 map to sequences of four glyphs, where
the first glyph is the @sc{ASCII} code for @samp{\}, and the others are
digit characters representing the code in octal. (A display table can
specify a glyph to use instead of @samp{\}.)
@end itemize
The usual display conventions apply even when there is a display
table, for any character whose entry in the active display table is
@code{nil}. Thus, when you set up a display table, you need only
specify the characters for which you want unusual behavior.
These variables affect the way certain characters are displayed on the
screen. Since they change the number of columns the characters occupy,
they also affect the indentation functions.
@defopt ctl-arrow
@cindex control characters in display
This buffer-local variable controls how control characters are
displayed. If it is non-@code{nil}, they are displayed as a caret
followed by the character: @samp{^A}. If it is @code{nil}, they are
displayed as a backslash followed by three octal digits: @samp{\001}.
@end defopt
@c Following may have overfull hbox.
@defvar default-ctl-arrow
The value of this variable is the default value for @code{ctl-arrow} in
buffers that do not override it. @xref{Default Value}.
@end defvar
@defopt tab-width
The value of this variable is the spacing between tab stops used for
displaying tab characters in Emacs buffers. The default is 8. Note
that this feature is completely independent from the user-settable tab
stops used by the command @code{tab-to-tab-stop}. @xref{Indent Tabs}.
@end defopt
@node Display Tables
@section Display Tables
@cindex display table
You can use the @dfn{display table} feature to control how all 256
possible character codes display on the screen. This is useful for
displaying European languages that have letters not in the @sc{ASCII}
character set.
The display table maps each character code into a sequence of
@dfn{runes}, each rune being an image that takes up one character
position on the screen. You can also define how to display each rune
on your terminal, using the @dfn{rune table}.
@menu
* Display Table Format:: What a display table consists of.
* Active Display Table:: How XEmacs selects a display table to use.
* Character Descriptors:: Format of an individual element of a
display table.
@end menu
@ignore Not yet working in XEmacs?
* ISO Latin 1:: How to use display tables
to support the ISO Latin 1 character set.
@end ignore
@node Display Table Format
@subsection Display Table Format
A display table is an array of 256 elements. (In FSF Emacs, a display
table is 262 elements. The six extra elements specify the truncation
and continuation glyphs, etc. This method is very kludgey, and in
XEmacs the variables @code{truncation-glyph}, @code{continuation-glyph},
etc. are used. @xref{Truncation}.)
@defun make-display-table
This creates and returns a display table. The table initially has
@code{nil} in all elements.
@end defun
The 256 elements correspond to character codes; the @var{n}th
element says how to display the character code @var{n}. The value
should be @code{nil}, a string, a glyph, or a vector of strings and
glyphs (@pxref{Character Descriptors}). If an element is @code{nil},
it says to display that character according to the usual display
conventions (@pxref{Usual Display}).
If you use the display table to change the display of newline
characters, the whole buffer will be displayed as one long ``line.''
For example, here is how to construct a display table that mimics the
effect of setting @code{ctl-arrow} to a non-@code{nil} value:
@example
(setq disptab (make-display-table))
(let ((i 0))
(while (< i 32)
(or (= i ?\t) (= i ?\n)
(aset disptab i (concat "^" (char-to-string (+ i 64)))))
(setq i (1+ i)))
(aset disptab 127 "^?"))
@end example
@node Active Display Table
@subsection Active Display Table
@cindex active display table
The active display table is controlled by the variable
@code{current-display-table}. This is a specifier, which means
that you can specify separate values for it in individual buffers,
windows, frames, and devices, as well as a global value. It also
means that you cannot set this variable using @code{setq}; use
@code{set-specifier} instead. @xref{Specifiers}. (FSF Emacs
uses @code{window-display-table}, @code{buffer-display-table},
@code{standard-display-table}, etc. to control the display table.
However, specifiers are a cleaner and more powerful way of doing
the same thing. FSF Emacs also uses a different format for
the contents of a display table, using additional indirection
to a ``glyph table'' and such. Note that ``glyph'' has a different
meaning in XEmacs.)
Individual faces can also specify an overriding display table;
this is set using @code{set-face-display-table}. @xref{Faces}.
If no display table can be determined for a particular window,
then XEmacs uses the usual display conventions. @xref{Usual Display}.
@node Character Descriptors
@subsection Character Descriptors
@cindex character descriptor
Each element of the display-table vector describes how to display
a particular character and is called a @dfn{character descriptor}.
A character descriptor can be:
@table @asis
@item a string
Display this particular string wherever the character is to be displayed.
@item a glyph
Display this particular glyph wherever the character is to be displayed.
@item a vector
The vector may contain strings and/or glyphs. Display the elements of
the vector one after another wherever the character is to be displayed.
@item @code{nil}
Display according to the standard interpretation (@pxref{Usual Display}).
@end table
@ignore Not yet working in XEmacs?
@node ISO Latin 1
@subsection ISO Latin 1
If you have a terminal that can handle the entire ISO Latin 1 character
set, you can arrange to use that character set as follows:
@example
(require 'disp-table)
;; @r{Set char codes 160--255 to display as themselves.}
;; @r{(Codes 128--159 are the additional control characters.)}
(standard-display-8bit 160 255)
@end example
If you are editing buffers written in the ISO Latin 1 character set and
your terminal doesn't handle anything but @sc{ASCII}, you can load the
file @file{iso-ascii} to set up a display table that displays the other
ISO characters as explanatory sequences of @sc{ASCII} characters. For
example, the character ``o with umlaut'' displays as @samp{@{"o@}}.
Some European countries have terminals that don't support ISO Latin 1
but do support the special characters for that country's language. You
can define a display table to work one language using such terminals.
For an example, see @file{lisp/iso-swed.el}, which handles certain
Swedish terminals.
You can load the appropriate display table for your terminal
automatically by writing a terminal-specific Lisp file for the terminal
type.
@end ignore
@node Beeping
@section Beeping
@cindex beeping
@cindex bell
@cindex sound
You can make XEmacs ring a bell, play a sound, or blink the screen to
attract the user's attention. Be conservative about how often you do
this; frequent bells can become irritating. Also be careful not to use
beeping alone when signaling an error is appropriate. (@xref{Errors}.)
@defun ding &optional dont-terminate sound device
@cindex keyboard macro termination
This function beeps, or flashes the screen (see @code{visible-bell}
below). It also terminates any keyboard macro currently executing
unless @var{dont-terminate} is non-@code{nil}. If @var{sound} is
specified, it should be a symbol specifying which sound to make. This
sound will be played if @code{visible-bell} is @code{nil}. (This only
works if sound support was compiled into the executable and you are
running on the console of a Sun SparcStation, SGI, or HP9000s700.
Otherwise you just get a beep.) The optional third argument specifies
what device to make the sound on, and defaults to the selected device.
@end defun
@defun beep &optional dont-terminate sound device
This is a synonym for @code{ding}.
@end defun
@defopt visible-bell
This variable determines whether XEmacs should flash the screen to
represent a bell. Non-@code{nil} means yes, @code{nil} means no. On
TTY devices, this is effective only if the Termcap entry for the
terminal type has the visible bell flag (@samp{vb}) set.
@end defopt
@defvar sound-alist
This variable holds an alist associating names with sounds. When
@code{beep} or @code{ding} is called with one of the name symbols, the
associated sound will be generated instead of the standard beep.
Each element of @code{sound-alist} is a list describing a sound. The
first element of the list is the name of the sound being defined.
Subsequent elements of the list are alternating keyword/value pairs:
@table @code
@item sound
A string of raw sound data, or the name of another sound to play. The
symbol @code{t} here means use the default X beep.
@item volume
An integer from 0-100, defaulting to @code{bell-volume}.
@item pitch
If using the default X beep, the pitch (Hz) to generate.
@item duration
If using the default X beep, the duration (milliseconds).
@end table
For compatibility, elements of `sound-alist' may also be:
@itemize @bullet
@item
@code{( sound-name . <sound> )}
@item
@code{( sound-name <volume> <sound> )}
@end itemize
You should probably add things to this list by calling the function
@code{load-sound-file}.
Caveats:
@itemize @minus
@item
You can only play audio data if running on the console screen of a Sun
SparcStation, SGI, or HP9000s700.
@item
The pitch, duration, and volume options are available everywhere, but
many X servers ignore the `pitch' option.
@end itemize
The following beep-types are used by XEmacs itself:
@table @code
@item auto-save-error
when an auto-save does not succeed
@item command-error
when the XEmacs command loop catches an error
@item undefined-key
when you type a key that is undefined
@item undefined-click
when you use an undefined mouse-click combination
@item no-completion
during completing-read
@item y-or-n-p
when you type something other than 'y' or 'n'
@item yes-or-no-p
when you type something other than 'yes' or 'no'
@item default
used when nothing else is appropriate.
@end table
Other lisp packages may use other beep types, but these are the ones that
the C kernel of XEmacs uses.
@end defvar
@defopt bell-volume
This variable specifies the default volume for sounds, from 0 to 100.
@end defopt
@deffn Command load-default-sounds
This function loads and installs some sound files as beep-types.
@end deffn
@deffn Command load-sound-file filename sound-name &optional volume
This function reads in an audio file and adds it to @code{sound-alist}.
The sound file must be in the Sun/NeXT U-LAW format. @var{sound-name}
should be a symbol, specifying the name of the sound. If @var{volume}
is specified, the sound will be played at that volume; otherwise, the
value of @var{bell-volume} will be used.
@end deffn
@defun play-sound sound &optional volume device
This function plays sound @var{sound}, which should be a symbol
mentioned in @code{sound-alist}. If @var{volume} is specified, it
overrides the value (if any) specified in @code{sound-alist}.
@var{device} specifies the device to play the sound on, and defaults
to the selected device.
@end defun
@deffn Command play-sound-file file &optional volume device
This function plays the named sound file at volume @var{volume}, which
defaults to @code{bell-volume}. @var{device} specifies the device to
play the sound on, and defaults to the selected device.
@end deffn
|