1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
|
@c -*-texinfo-*-
@c This is part of the XEmacs Lisp Reference Manual.
@c Copyright (C) 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
@c See the file lispref.texi for copying conditions.
@setfilename ../../info/os.info
@node System Interface, X-Windows, Processes, Top
@chapter Operating System Interface
This chapter is about starting and getting out of Emacs, access to
values in the operating system environment, and terminal input, output,
and flow control.
@xref{Building XEmacs}, for related information. See also
@ref{Display}, for additional operating system status information
pertaining to the terminal and the screen.
@menu
* Starting Up:: Customizing XEmacs start-up processing.
* Getting Out:: How exiting works (permanent or temporary).
* System Environment:: Distinguish the name and kind of system.
* User Identification:: Finding the name and user id of the user.
* Time of Day:: Getting the current time.
* Time Conversion:: Converting a time from numeric form to a string, or
to calendrical data (or vice versa).
* Timers:: Setting a timer to call a function at a certain time.
* Terminal Input:: Recording terminal input for debugging.
* Terminal Output:: Recording terminal output for debugging.
* Flow Control:: How to turn output flow control on or off.
* Batch Mode:: Running XEmacs without terminal interaction.
@end menu
@ignore
* Special Keysyms:: Defining system-specific key symbols for X windows.
@end ignore
@node Starting Up
@section Starting Up XEmacs
This section describes what XEmacs does when it is started, and how you
can customize these actions.
@menu
* Start-up Summary:: Sequence of actions XEmacs performs at start-up.
* Init File:: Details on reading the init file (@file{.emacs}).
* Terminal-Specific:: How the terminal-specific Lisp file is read.
* Command Line Arguments:: How command line arguments are processed,
and how you can customize them.
@end menu
@node Start-up Summary
@subsection Summary: Sequence of Actions at Start Up
@cindex initialization
@cindex start up of XEmacs
@cindex @file{startup.el}
The order of operations performed (in @file{startup.el}) by XEmacs when
it is started up is as follows:
@enumerate
@item
It loads the initialization library for the window system, if you are
using a window system. This library's name is
@file{term/@var{windowsystem}-win.el}.
@item
It processes the initial options. (Some of them are handled
even earlier than this.)
@item
It initializes the X window frame and faces, if appropriate.
@item
It runs the normal hook @code{before-init-hook}.
@item
It loads the library @file{site-start}, unless the option
@samp{-no-site-file} was specified. The library's file name is usually
@file{site-start.el}.
@cindex @file{site-start.el}
@item
It loads the file @file{~/.emacs} unless @samp{-q} was specified on
the command line. (This is not done in @samp{-batch} mode.) The @samp{-u}
option can specify the user name whose home directory should be used
instead of @file{~}.
@item
It loads the library @file{default} unless @code{inhibit-default-init}
is non-@code{nil}. (This is not done in @samp{-batch} mode or if
@samp{-q} was specified on the command line.) The library's file name
is usually @file{default.el}.
@cindex @file{default.el}
@item
It runs the normal hook @code{after-init-hook}.
@item
It sets the major mode according to @code{initial-major-mode}, provided
the buffer @samp{*scratch*} is still current and still in Fundamental
mode.
@item
It loads the terminal-specific Lisp file, if any, except when in batch
mode or using a window system.
@item
It displays the initial echo area message, unless you have suppressed
that with @code{inhibit-startup-echo-area-message}.
@item
It processes the action arguments from the command line.
@item
It runs @code{term-setup-hook}.
@item
It calls @code{frame-notice-user-settings}, which modifies the
parameters of the selected frame according to whatever the init files
specify.
@item
It runs @code{window-setup-hook}. @xref{Terminal-Specific}.
@item
It displays copyleft, nonwarranty, and basic use information, provided
there were no remaining command line arguments (a few steps above) and
the value of @code{inhibit-startup-message} is @code{nil}.
@end enumerate
@defopt inhibit-startup-message
This variable inhibits the initial startup messages (the nonwarranty,
etc.). If it is non-@code{nil}, then the messages are not printed.
This variable exists so you can set it in your personal init file, once
you are familiar with the contents of the startup message. Do not set
this variable in the init file of a new user, or in a way that affects
more than one user, because that would prevent new users from receiving
the information they are supposed to see.
@end defopt
@defopt inhibit-startup-echo-area-message
This variable controls the display of the startup echo area message.
You can suppress the startup echo area message by adding text with this
form to your @file{.emacs} file:
@example
(setq inhibit-startup-echo-area-message
"@var{your-login-name}")
@end example
Simply setting @code{inhibit-startup-echo-area-message} to your login
name is not sufficient to inhibit the message; Emacs explicitly checks
whether @file{.emacs} contains an expression as shown above. Your login
name must appear in the expression as a Lisp string constant.
This way, you can easily inhibit the message for yourself if you wish,
but thoughtless copying of your @file{.emacs} file will not inhibit the
message for someone else.
@end defopt
@node Init File
@subsection The Init File: @file{.emacs}
@cindex init file
@cindex @file{.emacs}
When you start XEmacs, it normally attempts to load the file
@file{.emacs} from your home directory. This file, if it exists, must
contain Lisp code. It is called your @dfn{init file}. The command line
switches @samp{-q} and @samp{-u} affect the use of the init file;
@samp{-q} says not to load an init file, and @samp{-u} says to load a
specified user's init file instead of yours. @xref{Entering XEmacs,,,
emacs, The XEmacs Reference Manual}.
@cindex default init file
A site may have a @dfn{default init file}, which is the library named
@file{default.el}. XEmacs finds the @file{default.el} file through the
standard search path for libraries (@pxref{How Programs Do Loading}).
The XEmacs distribution does not come with this file; sites may provide
one for local customizations. If the default init file exists, it is
loaded whenever you start Emacs, except in batch mode or if @samp{-q} is
specified. But your own personal init file, if any, is loaded first; if
it sets @code{inhibit-default-init} to a non-@code{nil} value, then
XEmacs does not subsequently load the @file{default.el} file.
Another file for site-customization is @file{site-start.el}. Emacs
loads this @emph{before} the user's init file. You can inhibit the
loading of this file with the option @samp{-no-site-file}.
@defvar site-run-file
This variable specifies the site-customization file to load
before the user's init file. Its normal value is @code{"site-start"}.
@end defvar
If there is a great deal of code in your @file{.emacs} file, you
should move it into another file named @file{@var{something}.el},
byte-compile it (@pxref{Byte Compilation}), and make your @file{.emacs}
file load the other file using @code{load} (@pxref{Loading}).
@xref{Init File Examples,,, emacs, The XEmacs Reference Manual}, for
examples of how to make various commonly desired customizations in your
@file{.emacs} file.
@defopt inhibit-default-init
This variable prevents XEmacs from loading the default initialization
library file for your session of XEmacs. If its value is non-@code{nil},
then the default library is not loaded. The default value is
@code{nil}.
@end defopt
@defvar before-init-hook
@defvarx after-init-hook
These two normal hooks are run just before, and just after, loading of
the user's init file, @file{default.el}, and/or @file{site-start.el}.
@end defvar
@node Terminal-Specific
@subsection Terminal-Specific Initialization
@cindex terminal-specific initialization
Each terminal type can have its own Lisp library that XEmacs loads when
run on that type of terminal. For a terminal type named @var{termtype},
the library is called @file{term/@var{termtype}}. XEmacs finds the file
by searching the @code{load-path} directories as it does for other
files, and trying the @samp{.elc} and @samp{.el} suffixes. Normally,
terminal-specific Lisp library is located in @file{emacs/lisp/term}, a
subdirectory of the @file{emacs/lisp} directory in which most XEmacs Lisp
libraries are kept.@refill
The library's name is constructed by concatenating the value of the
variable @code{term-file-prefix} and the terminal type. Normally,
@code{term-file-prefix} has the value @code{"term/"}; changing this
is not recommended.
The usual function of a terminal-specific library is to enable special
keys to send sequences that XEmacs can recognize. It may also need to
set or add to @code{function-key-map} if the Termcap entry does not
specify all the terminal's function keys. @xref{Terminal Input}.
@cindex Termcap
When the name of the terminal type contains a hyphen, only the part of
the name before the first hyphen is significant in choosing the library
name. Thus, terminal types @samp{aaa-48} and @samp{aaa-30-rv} both use
the @file{term/aaa} library. If necessary, the library can evaluate
@code{(getenv "TERM")} to find the full name of the terminal
type.@refill
Your @file{.emacs} file can prevent the loading of the
terminal-specific library by setting the variable
@code{term-file-prefix} to @code{nil}. This feature is useful when
experimenting with your own peculiar customizations.
You can also arrange to override some of the actions of the
terminal-specific library by setting the variable
@code{term-setup-hook}. This is a normal hook which XEmacs runs using
@code{run-hooks} at the end of XEmacs initialization, after loading both
your @file{.emacs} file and any terminal-specific libraries. You can
use this variable to define initializations for terminals that do not
have their own libraries. @xref{Hooks}.
@defvar term-file-prefix
@cindex @code{TERM} environment variable
If the @code{term-file-prefix} variable is non-@code{nil}, XEmacs loads
a terminal-specific initialization file as follows:
@example
(load (concat term-file-prefix (getenv "TERM")))
@end example
@noindent
You may set the @code{term-file-prefix} variable to @code{nil} in your
@file{.emacs} file if you do not wish to load the
terminal-initialization file. To do this, put the following in
your @file{.emacs} file: @code{(setq term-file-prefix nil)}.
@end defvar
@defvar term-setup-hook
This variable is a normal hook that XEmacs runs after loading your
@file{.emacs} file, the default initialization file (if any) and the
terminal-specific Lisp file.
You can use @code{term-setup-hook} to override the definitions made by a
terminal-specific file.
@end defvar
@defvar window-setup-hook
This variable is a normal hook which XEmacs runs after loading your
@file{.emacs} file and the default initialization file (if any), after
loading terminal-specific Lisp code, and after running the hook
@code{term-setup-hook}.
@end defvar
@node Command Line Arguments
@subsection Command Line Arguments
@cindex command line arguments
You can use command line arguments to request various actions when you
start XEmacs. Since you do not need to start XEmacs more than once per
day, and will often leave your XEmacs session running longer than that,
command line arguments are hardly ever used. As a practical matter, it
is best to avoid making the habit of using them, since this habit would
encourage you to kill and restart XEmacs unnecessarily often. These
options exist for two reasons: to be compatible with other editors (for
invocation by other programs) and to enable shell scripts to run
specific Lisp programs.
This section describes how Emacs processes command line arguments,
and how you can customize them.
@ignore
(Note that some other editors require you to start afresh each time
you want to edit a file. With this kind of editor, you will probably
specify the file as a command line argument. The recommended way to
use XEmacs is to start it only once, just after you log in, and do
all your editing in the same XEmacs process. Each time you want to edit
a different file, you visit it with the existing XEmacs, which eventually
comes to have many files in it ready for editing. Usually you do not
kill the XEmacs until you are about to log out.)
@end ignore
@defun command-line
This function parses the command line that XEmacs was called with,
processes it, loads the user's @file{.emacs} file and displays the
startup messages.
@end defun
@defvar command-line-processed
The value of this variable is @code{t} once the command line has been
processed.
If you redump XEmacs by calling @code{dump-emacs}, you may wish to set
this variable to @code{nil} first in order to cause the new dumped XEmacs
to process its new command line arguments.
@end defvar
@defvar command-switch-alist
@cindex switches on command line
@cindex options on command line
@cindex command line options
The value of this variable is an alist of user-defined command-line
options and associated handler functions. This variable exists so you
can add elements to it.
A @dfn{command line option} is an argument on the command line of the
form:
@example
-@var{option}
@end example
The elements of the @code{command-switch-alist} look like this:
@example
(@var{option} . @var{handler-function})
@end example
The @var{handler-function} is called to handle @var{option} and receives
the option name as its sole argument.
In some cases, the option is followed in the command line by an
argument. In these cases, the @var{handler-function} can find all the
remaining command-line arguments in the variable
@code{command-line-args-left}. (The entire list of command-line
arguments is in @code{command-line-args}.)
The command line arguments are parsed by the @code{command-line-1}
function in the @file{startup.el} file. See also @ref{Command
Switches, , Command Line Switches and Arguments, emacs, The XEmacs
Reference Manual}.
@end defvar
@defvar command-line-args
The value of this variable is the list of command line arguments passed
to XEmacs.
@end defvar
@defvar command-line-functions
This variable's value is a list of functions for handling an
unrecognized command-line argument. Each time the next argument to be
processed has no special meaning, the functions in this list are called,
in order of appearance, until one of them returns a non-@code{nil}
value.
These functions are called with no arguments. They can access the
command-line argument under consideration through the variable
@code{argi}. The remaining arguments (not including the current one)
are in the variable @code{command-line-args-left}.
When a function recognizes and processes the argument in @code{argi}, it
should return a non-@code{nil} value to say it has dealt with that
argument. If it has also dealt with some of the following arguments, it
can indicate that by deleting them from @code{command-line-args-left}.
If all of these functions return @code{nil}, then the argument is used
as a file name to visit.
@end defvar
@node Getting Out
@section Getting out of XEmacs
@cindex exiting XEmacs
There are two ways to get out of XEmacs: you can kill the XEmacs job,
which exits permanently, or you can suspend it, which permits you to
reenter the XEmacs process later. As a practical matter, you seldom kill
XEmacs---only when you are about to log out. Suspending is much more
common.
@menu
* Killing XEmacs:: Exiting XEmacs irreversibly.
* Suspending XEmacs:: Exiting XEmacs reversibly.
@end menu
@node Killing XEmacs
@subsection Killing XEmacs
@cindex killing XEmacs
Killing XEmacs means ending the execution of the XEmacs process. The
parent process normally resumes control. The low-level primitive for
killing XEmacs is @code{kill-emacs}.
@defun kill-emacs &optional exit-data
This function exits the XEmacs process and kills it.
If @var{exit-data} is an integer, then it is used as the exit status
of the XEmacs process. (This is useful primarily in batch operation; see
@ref{Batch Mode}.)
If @var{exit-data} is a string, its contents are stuffed into the
terminal input buffer so that the shell (or whatever program next reads
input) can read them.
@end defun
All the information in the XEmacs process, aside from files that have
been saved, is lost when the XEmacs is killed. Because killing XEmacs
inadvertently can lose a lot of work, XEmacs queries for confirmation
before actually terminating if you have buffers that need saving or
subprocesses that are running. This is done in the function
@code{save-buffers-kill-emacs}.
@defvar kill-emacs-query-functions
After asking the standard questions, @code{save-buffers-kill-emacs}
calls the functions in the list @code{kill-buffer-query-functions}, in
order of appearance, with no arguments. These functions can ask for
additional confirmation from the user. If any of them returns
non-@code{nil}, XEmacs is not killed.
@end defvar
@defvar kill-emacs-hook
This variable is a normal hook; once @code{save-buffers-kill-emacs} is
finished with all file saving and confirmation, it runs the functions in
this hook.
@end defvar
@node Suspending XEmacs
@subsection Suspending XEmacs
@cindex suspending XEmacs
@dfn{Suspending XEmacs} means stopping XEmacs temporarily and returning
control to its superior process, which is usually the shell. This
allows you to resume editing later in the same XEmacs process, with the
same buffers, the same kill ring, the same undo history, and so on. To
resume XEmacs, use the appropriate command in the parent shell---most
likely @code{fg}.
Some operating systems do not support suspension of jobs; on these
systems, ``suspension'' actually creates a new shell temporarily as a
subprocess of XEmacs. Then you would exit the shell to return to XEmacs.
Suspension is not useful with window systems such as X, because the
XEmacs job may not have a parent that can resume it again, and in any
case you can give input to some other job such as a shell merely by
moving to a different window. Therefore, suspending is not allowed
when XEmacs is an X client.
@defun suspend-emacs string
This function stops XEmacs and returns control to the superior process.
If and when the superior process resumes XEmacs, @code{suspend-emacs}
returns @code{nil} to its caller in Lisp.
If @var{string} is non-@code{nil}, its characters are sent to be read
as terminal input by XEmacs's superior shell. The characters in
@var{string} are not echoed by the superior shell; only the results
appear.
Before suspending, @code{suspend-emacs} runs the normal hook
@code{suspend-hook}. In Emacs version 18, @code{suspend-hook} was not a
normal hook; its value was a single function, and if its value was
non-@code{nil}, then @code{suspend-emacs} returned immediately without
actually suspending anything.
After the user resumes XEmacs, @code{suspend-emacs} runs the normal hook
@code{suspend-resume-hook}. @xref{Hooks}.
The next redisplay after resumption will redraw the entire screen,
unless the variable @code{no-redraw-on-reenter} is non-@code{nil}
(@pxref{Refresh Screen}).
In the following example, note that @samp{pwd} is not echoed after
XEmacs is suspended. But it is read and executed by the shell.
@smallexample
@group
(suspend-emacs)
@result{} nil
@end group
@group
(add-hook 'suspend-hook
(function (lambda ()
(or (y-or-n-p
"Really suspend? ")
(error "Suspend cancelled")))))
@result{} (lambda nil
(or (y-or-n-p "Really suspend? ")
(error "Suspend cancelled")))
@end group
@group
(add-hook 'suspend-resume-hook
(function (lambda () (message "Resumed!"))))
@result{} (lambda nil (message "Resumed!"))
@end group
@group
(suspend-emacs "pwd")
@result{} nil
@end group
@group
---------- Buffer: Minibuffer ----------
Really suspend? @kbd{y}
---------- Buffer: Minibuffer ----------
@end group
@group
---------- Parent Shell ----------
lewis@@slug[23] % /user/lewis/manual
lewis@@slug[24] % fg
@end group
@group
---------- Echo Area ----------
Resumed!
@end group
@end smallexample
@end defun
@defvar suspend-hook
This variable is a normal hook run before suspending.
@end defvar
@defvar suspend-resume-hook
This variable is a normal hook run after suspending.
@end defvar
@node System Environment
@section Operating System Environment
@cindex operating system environment
XEmacs provides access to variables in the operating system environment
through various functions. These variables include the name of the
system, the user's @sc{uid}, and so on.
@defvar system-type
The value of this variable is a symbol indicating the type of operating
system XEmacs is operating on. Here is a table of the possible values:
@table @code
@item aix-v3
AIX.
@item berkeley-unix
Berkeley BSD.
@item dgux
Data General DGUX operating system.
@item gnu
A GNU system using the GNU HURD and Mach.
@item hpux
Hewlett-Packard HPUX operating system.
@item irix
Silicon Graphics Irix system.
@item linux
A GNU system using the Linux kernel.
@item ms-dos
Microsoft MS-DOS ``operating system.''
@item next-mach
NeXT Mach-based system.
@item rtu
Masscomp RTU, UCB universe.
@item unisoft-unix
UniSoft UniPlus.
@item usg-unix-v
AT&T System V.
@item vax-vms
VAX VMS.
@item windows-nt
Microsoft windows NT.
@item xenix
SCO Xenix 386.
@end table
We do not wish to add new symbols to make finer distinctions unless it
is absolutely necessary! In fact, we hope to eliminate some of these
alternatives in the future. We recommend using
@code{system-configuration} to distinguish between different operating
systems.
@end defvar
@defvar system-configuration
This variable holds the three-part configuration name for the
hardware/software configuration of your system, as a string. The
convenient way to test parts of this string is with @code{string-match}.
@end defvar
@defun system-name
This function returns the name of the machine you are running on.
@example
(system-name)
@result{} "prep.ai.mit.edu"
@end example
@end defun
@vindex system-name
The symbol @code{system-name} is a variable as well as a function. In
fact, the function returns whatever value the variable
@code{system-name} currently holds. Thus, you can set the variable
@code{system-name} in case Emacs is confused about the name of your
system. The variable is also useful for constructing frame titles
(@pxref{Frame Titles}).
@defvar mail-host-address
If this variable is non-@code{nil}, it is used instead of
@code{system-name} for purposes of generating email addresses. For
example, it is used when constructing the default value of
@code{user-mail-address}. @xref{User Identification}. (Since this is
done when XEmacs starts up, the value actually used is the one saved when
XEmacs was dumped. @xref{Building XEmacs}.)
@end defvar
@defun getenv var
@cindex environment variable access
This function returns the value of the environment variable @var{var},
as a string. Within XEmacs, the environment variable values are kept in
the Lisp variable @code{process-environment}.
@example
@group
(getenv "USER")
@result{} "lewis"
@end group
@group
lewis@@slug[10] % printenv
PATH=.:/user/lewis/bin:/usr/bin:/usr/local/bin
USER=lewis
@end group
@group
TERM=ibmapa16
SHELL=/bin/csh
HOME=/user/lewis
@end group
@end example
@end defun
@c Emacs 19 feature
@deffn Command setenv variable value
This command sets the value of the environment variable named
@var{variable} to @var{value}. Both arguments should be strings. This
function works by modifying @code{process-environment}; binding that
variable with @code{let} is also reasonable practice.
@end deffn
@defvar process-environment
This variable is a list of strings, each describing one environment
variable. The functions @code{getenv} and @code{setenv} work by means
of this variable.
@smallexample
@group
process-environment
@result{} ("l=/usr/stanford/lib/gnuemacs/lisp"
"PATH=.:/user/lewis/bin:/usr/class:/nfsusr/local/bin"
"USER=lewis"
@end group
@group
"TERM=ibmapa16"
"SHELL=/bin/csh"
"HOME=/user/lewis")
@end group
@end smallexample
@end defvar
@defvar path-separator
This variable holds a string which says which character separates
directories in a search path (as found in an environment variable). Its
value is @code{":"} for Unix and GNU systems, and @code{";"} for MS-DOS
and Windows NT.
@end defvar
@defvar invocation-name
This variable holds the program name under which Emacs was invoked. The
value is a string, and does not include a directory name.
@end defvar
@defvar invocation-directory
This variable holds the directory from which the Emacs executable was
invoked, or perhaps @code{nil} if that directory cannot be determined.
@end defvar
@defvar installation-directory
If non-@code{nil}, this is a directory within which to look for the
@file{lib-src} and @file{etc} subdirectories. This is non-@code{nil}
when Emacs can't find those directories in their standard installed
locations, but can find them in a directory related somehow to the one
containing the Emacs executable.
@end defvar
@defun load-average
This function returns the current 1-minute, 5-minute and 15-minute
load averages in a list. The values are integers that are 100 times
the system load averages. (The load averages indicate the number of
processes trying to run.)
@example
@group
(load-average)
@result{} (169 48 36)
@end group
@group
lewis@@rocky[5] % uptime
11:55am up 1 day, 19:37, 3 users,
load average: 1.69, 0.48, 0.36
@end group
@end example
@end defun
@defun emacs-pid
This function returns the process @sc{id} of the Emacs process.
@end defun
@defun setprv privilege-name &optional setp getprv
This function sets or resets a VMS privilege. (It does not exist on
Unix.) The first arg is the privilege name, as a string. The second
argument, @var{setp}, is @code{t} or @code{nil}, indicating whether the
privilege is to be turned on or off. Its default is @code{nil}. The
function returns @code{t} if successful, @code{nil} otherwise.
If the third argument, @var{getprv}, is non-@code{nil}, @code{setprv}
does not change the privilege, but returns @code{t} or @code{nil}
indicating whether the privilege is currently enabled.
@end defun
@node User Identification
@section User Identification
@defvar user-mail-address
This holds the nominal email address of the user who is using Emacs.
When Emacs starts up, it computes a default value that is usually right,
but users often set this themselves when the default value is not right.
@end defvar
@defun user-login-name &optional uid
If you don't specify @var{uid}, this function returns the name under
which the user is logged in. If the environment variable @code{LOGNAME}
is set, that value is used. Otherwise, if the environment variable
@code{USER} is set, that value is used. Otherwise, the value is based
on the effective @sc{uid}, not the real @sc{uid}.
If you specify @var{uid}, the value is the user name that corresponds
to @var{uid} (which should be an integer).
@example
@group
(user-login-name)
@result{} "lewis"
@end group
@end example
@end defun
@defun user-real-login-name
This function returns the user name corresponding to Emacs's real
@sc{uid}. This ignores the effective @sc{uid} and ignores the
environment variables @code{LOGNAME} and @code{USER}.
@end defun
@defun user-full-name
This function returns the full name of the user.
@example
@group
(user-full-name)
@result{} "Bil Lewis"
@end group
@end example
@end defun
@vindex user-full-name
@vindex user-real-login-name
@vindex user-login-name
The symbols @code{user-login-name}, @code{user-real-login-name} and
@code{user-full-name} are variables as well as functions. The functions
return the same values that the variables hold. These variables allow
you to ``fake out'' Emacs by telling the functions what to return. The
variables are also useful for constructing frame titles (@pxref{Frame
Titles}).
@defun user-real-uid
This function returns the real @sc{uid} of the user.
@example
@group
(user-real-uid)
@result{} 19
@end group
@end example
@end defun
@defun user-uid
This function returns the effective @sc{uid} of the user.
@end defun
@node Time of Day
@section Time of Day
This section explains how to determine the current time and the time
zone.
@defun current-time-string &optional time-value
This function returns the current time and date as a humanly-readable
string. The format of the string is unvarying; the number of characters
used for each part is always the same, so you can reliably use
@code{substring} to extract pieces of it. It is wise to count the
characters from the beginning of the string rather than from the end, as
additional information may be added at the end.
@c Emacs 19 feature
The argument @var{time-value}, if given, specifies a time to format
instead of the current time. The argument should be a list whose first
two elements are integers. Thus, you can use times obtained from
@code{current-time} (see below) and from @code{file-attributes}
(@pxref{File Attributes}).
@example
@group
(current-time-string)
@result{} "Wed Oct 14 22:21:05 1987"
@end group
@end example
@end defun
@c Emacs 19 feature
@defun current-time
This function returns the system's time value as a list of three
integers: @code{(@var{high} @var{low} @var{microsec})}. The integers
@var{high} and @var{low} combine to give the number of seconds since
0:00 January 1, 1970, which is
@ifinfo
@var{high} * 2**16 + @var{low}.
@end ifinfo
@tex
$high*2^{16}+low$.
@end tex
The third element, @var{microsec}, gives the microseconds since the
start of the current second (or 0 for systems that return time only on
the resolution of a second).
The first two elements can be compared with file time values such as you
get with the function @code{file-attributes}. @xref{File Attributes}.
@end defun
@c Emacs 19 feature
@defun current-time-zone &optional time-value
This function returns a list describing the time zone that the user is
in.
The value has the form @code{(@var{offset} @var{name})}. Here
@var{offset} is an integer giving the number of seconds ahead of UTC
(east of Greenwich). A negative value means west of Greenwich. The
second element, @var{name} is a string giving the name of the time
zone. Both elements change when daylight savings time begins or ends;
if the user has specified a time zone that does not use a seasonal time
adjustment, then the value is constant through time.
If the operating system doesn't supply all the information necessary to
compute the value, both elements of the list are @code{nil}.
The argument @var{time-value}, if given, specifies a time to analyze
instead of the current time. The argument should be a cons cell
containing two integers, or a list whose first two elements are
integers. Thus, you can use times obtained from @code{current-time}
(see above) and from @code{file-attributes} (@pxref{File Attributes}).
@end defun
@node Time Conversion
@section Time Conversion
These functions convert time values (lists of two or three integers)
to strings or to calendrical information. There is also a function to
convert calendrical information to a time value. You can get time
values from the functions @code{current-time} (@pxref{Time of Day}) and
@code{file-attributes} (@pxref{File Attributes}).
@defun format-time-string format-string time
This function converts @var{time} to a string according to
@var{format-string}. The argument @var{format-string} may contain
@samp{%}-sequences which say to substitute parts of the time. Here is a
table of what the @samp{%}-sequences mean:
@table @samp
@item %a
This stands for the abbreviated name of the day of week.
@item %A
This stands for the full name of the day of week.
@item %b
This stands for the abbreviated name of the month.
@item %B
This stands for the full name of the month.
@item %c
This is a synonym for @samp{%x %X}.
@item %C
This has a locale-specific meaning. In the default locale (named C), it
is equivalent to @samp{%A, %B %e, %Y}.
@item %d
This stands for the day of month, zero-padded.
@item %D
This is a synonym for @samp{%m/%d/%y}.
@item %e
This stands for the day of month, blank-padded.
@item %h
This is a synonym for @samp{%b}.
@item %H
This stands for the hour (00-23).
@item %I
This stands for the hour (00-12).
@item %j
This stands for the day of the year (001-366).
@item %k
This stands for the hour (0-23), blank padded.
@item %l
This stands for the hour (1-12), blank padded.
@item %m
This stands for the month (01-12).
@item %M
This stands for the minute (00-59).
@item %n
This stands for a newline.
@item %p
This stands for @samp{AM} or @samp{PM}, as appropriate.
@item %r
This is a synonym for @samp{%I:%M:%S %p}.
@item %R
This is a synonym for @samp{%H:%M}.
@item %S
This stands for the seconds (00-60).
@item %t
This stands for a tab character.
@item %T
This is a synonym for @samp{%H:%M:%S}.
@item %U
This stands for the week of the year (01-52), assuming that weeks
start on Sunday.
@item %w
This stands for the numeric day of week (0-6). Sunday is day 0.
@item %W
This stands for the week of the year (01-52), assuming that weeks
start on Monday.
@item %x
This has a locale-specific meaning. In the default locale (named C), it
is equivalent to @samp{%D}.
@item %X
This has a locale-specific meaning. In the default locale (named C), it
is equivalent to @samp{%T}.
@item %y
This stands for the year without century (00-99).
@item %Y
This stands for the year with century.
@item %Z
This stands for the time zone abbreviation.
@end table
@end defun
@defun decode-time time
This function converts a time value into calendrical information. The
return value is a list of nine elements, as follows:
@example
(@var{seconds} @var{minutes} @var{hour} @var{day} @var{month} @var{year} @var{dow} @var{dst} @var{zone})
@end example
Here is what the elements mean:
@table @var
@item sec
The number of seconds past the minute, as an integer between 0 and 59.
@item minute
The number of minutes past the hour, as an integer between 0 and 59.
@item hour
The hour of the day, as an integer between 0 and 23.
@item day
The day of the month, as an integer between 1 and 31.
@item month
The month of the year, as an integer between 1 and 12.
@item year
The year, an integer typically greater than 1900.
@item dow
The day of week, as an integer between 0 and 6, where 0 stands for
Sunday.
@item dst
@code{t} if daylight savings time is effect, otherwise @code{nil}.
@item zone
An integer indicating the time zone, as the number of seconds east of
Greenwich.
@end table
Note that Common Lisp has different meanings for @var{dow} and
@var{zone}.
@end defun
@defun encode-time seconds minutes hour day month year &optional zone
This function is the inverse of @code{decode-time}. It converts seven
items of calendrical data into a time value. For the meanings of the
arguments, see the table above under @code{decode-time}.
Year numbers less than 100 are treated just like other year numbers. If
you want them to stand for years above 1900, you must alter them yourself
before you call @code{encode-time}.
The optional argument @var{zone} defaults to the current time zone and
its daylight savings time rules. If specified, it can be either a list
(as you would get from @code{current-time-zone}) or an integer (as you
would get from @code{decode-time}). The specified zone is used without
any further alteration for daylight savings time.
@end defun
@node Timers
@section Timers for Delayed Execution
You can set up a timer to call a function at a specified future time.
@c All different in FSF 19
@defun add-timeout secs function object &optional resignal
This function adds a timeout, to be signaled after the timeout period
has elapsed. @var{secs} is a number of seconds, expressed as an integer
or a float. @var{function} will be called after that many seconds have
elapsed, with one argument, the given @var{object}. If the optional
@var{resignal} argument is provided, then after this timeout expires,
`add-timeout' will automatically be called again with @var{resignal} as the
first argument.
This function returns an object which is the @dfn{id} of this particular
timeout. You can pass that object to @code{disable-timeout} to turn off
the timeout before it has been signalled.
The number of seconds may be expressed as a floating-point number, in which
case some fractional part of a second will be used. Caveat: the usable
timeout granularity will vary from system to system.
Adding a timeout causes a timeout event to be returned by
@code{next-event}, and the function will be invoked by
@code{dispatch-event}, so if XEmacs is in a tight loop, the function will
not be invoked until the next call to sit-for or until the return to
top-level (the same is true of process filters).
WARNING: if you are thinking of calling add-timeout from inside of a
callback function as a way of resignalling a timeout, think again. There
is a race condition. That's why the @var{resignal} argument exists.
(NOTE: In FSF Emacs, this function is called @code{run-at-time} and
has different semantics.)
@end defun
@defun disable-timeout id
Cancel the requested action for @var{id}, which should be a value
previously returned by @code{add-timeout}. This cancels the effect of
that call to @code{add-timeout}; the arrival of the specified time will
not cause anything special to happen.
(NOTE: In FSF Emacs, this function is called @code{cancel-timer}.)
@end defun
@node Terminal Input
@section Terminal Input
@cindex terminal input
This section describes functions and variables for recording or
manipulating terminal input. See @ref{Display}, for related
functions.
@menu
* Input Modes:: Options for how input is processed.
* Translating Input:: Low level conversion of some characters or events
into others.
* Recording Input:: Saving histories of recent or all input events.
@end menu
@node Input Modes
@subsection Input Modes
@cindex input modes
@cindex terminal input modes
@defun set-input-mode interrupt flow meta quit-char
This function sets the mode for reading keyboard input. If
@var{interrupt} is non-null, then XEmacs uses input interrupts. If it is
@code{nil}, then it uses @sc{cbreak} mode. When XEmacs communicates
directly with X, it ignores this argument and uses interrupts if that is
the way it knows how to communicate.
If @var{flow} is non-@code{nil}, then XEmacs uses @sc{xon/xoff} (@kbd{C-q},
@kbd{C-s}) flow control for output to the terminal. This has no effect except
in @sc{cbreak} mode. @xref{Flow Control}.
The default setting is system dependent. Some systems always use
@sc{cbreak} mode regardless of what is specified.
@c Emacs 19 feature
The argument @var{meta} controls support for input character codes
above 127. If @var{meta} is @code{t}, XEmacs converts characters with
the 8th bit set into Meta characters. If @var{meta} is @code{nil},
XEmacs disregards the 8th bit; this is necessary when the terminal uses
it as a parity bit. If @var{meta} is neither @code{t} nor @code{nil},
XEmacs uses all 8 bits of input unchanged. This is good for terminals
using European 8-bit character sets.
@c Emacs 19 feature
If @var{quit-char} is non-@code{nil}, it specifies the character to
use for quitting. Normally this character is @kbd{C-g}.
@xref{Quitting}.
@end defun
The @code{current-input-mode} function returns the input mode settings
XEmacs is currently using.
@c Emacs 19 feature
@defun current-input-mode
This function returns current mode for reading keyboard input. It
returns a list, corresponding to the arguments of @code{set-input-mode},
of the form @code{(@var{interrupt} @var{flow} @var{meta} @var{quit})} in
which:
@table @var
@item interrupt
is non-@code{nil} when XEmacs is using interrupt-driven input. If
@code{nil}, Emacs is using @sc{cbreak} mode.
@item flow
is non-@code{nil} if XEmacs uses @sc{xon/xoff} (@kbd{C-q}, @kbd{C-s})
flow control for output to the terminal. This value has no effect
unless @var{interrupt} is non-@code{nil}.
@item meta
is @code{t} if XEmacs treats the eighth bit of input characters as
the meta bit; @code{nil} means XEmacs clears the eighth bit of every
input character; any other value means XEmacs uses all eight bits as the
basic character code.
@item quit
is the character XEmacs currently uses for quitting, usually @kbd{C-g}.
@end table
@end defun
@node Translating Input
@subsection Translating Input Events
@cindex translating input events
This section describes features for translating input events into other
input events before they become part of key sequences.
@ignore Not in XEmacs yet.
@c Emacs 19 feature
@defvar extra-keyboard-modifiers
This variable lets Lisp programs ``press'' the modifier keys on the
keyboard. The value is a bit mask:
@table @asis
@item 1
The @key{SHIFT} key.
@item 2
The @key{LOCK} key.
@item 4
The @key{CTL} key.
@item 8
The @key{META} key.
@end table
Each time the user types a keyboard key, it is altered as if the
modifier keys specified in the bit mask were held down.
When using X windows, the program can ``press'' any of the modifier
keys in this way. Otherwise, only the @key{CTL} and @key{META} keys can
be virtually pressed.
@end defvar
@defvar keyboard-translate-table
This variable is the translate table for keyboard characters. It lets
you reshuffle the keys on the keyboard without changing any command
bindings. Its value must be a string or @code{nil}.
If @code{keyboard-translate-table} is a string, then each character read
from the keyboard is looked up in this string and the character in the
string is used instead. If the string is of length @var{n}, character codes
@var{n} and up are untranslated.
In the example below, we set @code{keyboard-translate-table} to a
string of 128 characters. Then we fill it in to swap the characters
@kbd{C-s} and @kbd{C-\} and the characters @kbd{C-q} and @kbd{C-^}.
Subsequently, typing @kbd{C-\} has all the usual effects of typing
@kbd{C-s}, and vice versa. (@xref{Flow Control} for more information on
this subject.)
@cindex flow control example
@example
@group
(defun evade-flow-control ()
"Replace C-s with C-\ and C-q with C-^."
(interactive)
@end group
@group
(let ((the-table (make-string 128 0)))
(let ((i 0))
(while (< i 128)
(aset the-table i i)
(setq i (1+ i))))
@end group
;; @r{Swap @kbd{C-s} and @kbd{C-\}.}
(aset the-table ?\034 ?\^s)
(aset the-table ?\^s ?\034)
@group
;; @r{Swap @kbd{C-q} and @kbd{C-^}.}
(aset the-table ?\036 ?\^q)
(aset the-table ?\^q ?\036)
(setq keyboard-translate-table the-table)))
@end group
@end example
Note that this translation is the first thing that happens to a
character after it is read from the terminal. Record-keeping features
such as @code{recent-keys} and dribble files record the characters after
translation.
@end defvar
@defun keyboard-translate from to
This function modifies @code{keyboard-translate-table} to translate
character code @var{from} into character code @var{to}. It creates
or enlarges the translate table if necessary.
@end defun
@end ignore
@defvar function-key-map
This variable holds a keymap that describes the character sequences
sent by function keys on an ordinary character terminal. This keymap
uses the same data structure as other keymaps, but is used differently: it
specifies translations to make while reading events.
If @code{function-key-map} ``binds'' a key sequence @var{k} to a vector
@var{v}, then when @var{k} appears as a subsequence @emph{anywhere} in a
key sequence, it is replaced with the events in @var{v}.
For example, VT100 terminals send @kbd{@key{ESC} O P} when the
keypad PF1 key is pressed. Therefore, we want XEmacs to translate
that sequence of events into the single event @code{pf1}. We accomplish
this by ``binding'' @kbd{@key{ESC} O P} to @code{[pf1]} in
@code{function-key-map}, when using a VT100.
Thus, typing @kbd{C-c @key{PF1}} sends the character sequence @kbd{C-c
@key{ESC} O P}; later the function @code{read-key-sequence} translates
this back into @kbd{C-c @key{PF1}}, which it returns as the vector
@code{[?\C-c pf1]}.
Entries in @code{function-key-map} are ignored if they conflict with
bindings made in the minor mode, local, or global keymaps. The intent
is that the character sequences that function keys send should not have
command bindings in their own right.
The value of @code{function-key-map} is usually set up automatically
according to the terminal's Terminfo or Termcap entry, but sometimes
those need help from terminal-specific Lisp files. XEmacs comes with
terminal-specific files for many common terminals; their main purpose is
to make entries in @code{function-key-map} beyond those that can be
deduced from Termcap and Terminfo. @xref{Terminal-Specific}.
Emacs versions 18 and earlier used totally different means of detecting
the character sequences that represent function keys.
@end defvar
@defvar key-translation-map
This variable is another keymap used just like @code{function-key-map}
to translate input events into other events. It differs from
@code{function-key-map} in two ways:
@itemize @bullet
@item
@code{key-translation-map} goes to work after @code{function-key-map} is
finished; it receives the results of translation by
@code{function-key-map}.
@item
@code{key-translation-map} overrides actual key bindings.
@end itemize
The intent of @code{key-translation-map} is for users to map one
character set to another, including ordinary characters normally bound
to @code{self-insert-command}.
@end defvar
@cindex key translation function
You can use @code{function-key-map} or @code{key-translation-map} for
more than simple aliases, by using a function, instead of a key
sequence, as the ``translation'' of a key. Then this function is called
to compute the translation of that key.
The key translation function receives one argument, which is the prompt
that was specified in @code{read-key-sequence}---or @code{nil} if the
key sequence is being read by the editor command loop. In most cases
you can ignore the prompt value.
If the function reads input itself, it can have the effect of altering
the event that follows. For example, here's how to define @kbd{C-c h}
to turn the character that follows into a Hyper character:
@example
@group
(defun hyperify (prompt)
(let ((e (read-event)))
(vector (if (numberp e)
(logior (lsh 1 20) e)
(if (memq 'hyper (event-modifiers e))
e
(add-event-modifier "H-" e))))))
(defun add-event-modifier (string e)
(let ((symbol (if (symbolp e) e (car e))))
(setq symbol (intern (concat string
(symbol-name symbol))))
@end group
@group
(if (symbolp e)
symbol
(cons symbol (cdr e)))))
(define-key function-key-map "\C-ch" 'hyperify)
@end group
@end example
@pindex iso-transl
@cindex Latin-1 character set (input)
@cindex ISO Latin-1 characters (input)
The @file{iso-transl} library uses this feature to provide a way of
inputting non-ASCII Latin-1 characters.
@node Recording Input
@subsection Recording Input
@defun recent-keys
This function returns a vector containing the last 100 input events
from the keyboard or mouse. All input events are included, whether or
not they were used as parts of key sequences. Thus, you always get the
last 100 inputs, not counting keyboard macros. (Events from keyboard
macros are excluded because they are less interesting for debugging; it
should be enough to see the events that invoked the macros.)
@end defun
@deffn Command open-dribble-file filename
@cindex dribble file
This function opens a @dfn{dribble file} named @var{filename}. When a
dribble file is open, each input event from the keyboard or mouse (but
not those from keyboard macros) is written in that file. A
non-character event is expressed using its printed representation
surrounded by @samp{<@dots{}>}.
You close the dribble file by calling this function with an argument
of @code{nil}.
This function is normally used to record the input necessary to
trigger an XEmacs bug, for the sake of a bug report.
@example
@group
(open-dribble-file "~/dribble")
@result{} nil
@end group
@end example
@end deffn
See also the @code{open-termscript} function (@pxref{Terminal Output}).
@node Terminal Output
@section Terminal Output
@cindex terminal output
The terminal output functions send output to the terminal or keep
track of output sent to the terminal. The function
@code{device-baud-rate} tells you what XEmacs thinks is the output speed
of the terminal.
@defun device-baud-rate &optional device
This function's value is the output speed of the terminal associated
with @var{device}, as far as XEmacs knows. @var{device} defaults to the
selected device (usually the only device) if omitted. Changing this
value does not change the speed of actual data transmission, but the
value is used for calculations such as padding. This value has no
effect for window-system devices. (This is different in FSF Emacs, where
the baud rate also affects decisions about whether to scroll part of the
screen or repaint, even when using a window system.)
The value is measured in bits per second.
@end defun
XEmacs attempts to automatically initialize the baud rate by querying
the terminal. If you are running across a network, however, and
different parts of the network work are at different baud rates, the
value returned by XEmacs may be different from the value used by your
local terminal. Some network protocols communicate the local terminal
speed to the remote machine, so that XEmacs and other programs can get
the proper value, but others do not. If XEmacs has the wrong value, it
makes decisions that are less than optimal. To fix the problem, use
@code{set-device-baud-rate}.
@defun set-device-baud-rate &optional device
This function sets the output speed of @var{device}. See
@code{device-baud-rate}. @var{device} defaults to the selected device
(usually the only device) if omitted.
@end defun
@defun send-string-to-terminal char-or-string &optional stdout-p device
This function sends @var{char-or-string} to the terminal without
alteration. Control characters in @var{char-or-string} have
terminal-dependent effects.
If @var{device} is @code{nil}, this function writes to XEmacs's
stderr, or to stdout if @var{stdout-p} is non-@code{nil}. Otherwise,
@var{device} should be a tty or stream device, and the function writes
to the device's normal or error output, according to @var{stdout-p}.
One use of this function is to define function keys on terminals that
have downloadable function key definitions. For example, this is how on
certain terminals to define function key 4 to move forward four
characters (by transmitting the characters @kbd{C-u C-f} to the
computer):
@example
@group
(send-string-to-terminal "\eF4\^U\^F")
@result{} nil
@end group
@end example
@end defun
@deffn Command open-termscript filename
@cindex termscript file
This function is used to open a @dfn{termscript file} that will record
all the characters sent by XEmacs to the terminal. (If there are
multiple tty or stream devices, all characters sent to all such devices
are recorded.) The funcion returns @code{nil}. Termscript files are
useful for investigating problems where XEmacs garbles the screen,
problems that are due to incorrect Termcap entries or to undesirable
settings of terminal options more often than to actual XEmacs bugs.
Once you are certain which characters were actually output, you can
determine reliably whether they correspond to the Termcap specifications
in use.
A @code{nil} value for @var{filename} stops recording terminal output.
See also @code{open-dribble-file} in @ref{Terminal Input}.
@example
@group
(open-termscript "../junk/termscript")
@result{} nil
@end group
@end example
@end deffn
@ignore Not in XEmacs
@node Special Keysyms
@section System-Specific X11 Keysyms
To define system-specific X11 keysyms, set the variable
@code{system-key-alist}.
@defvar system-key-alist
This variable's value should be an alist with one element for each
system-specific keysym. An element has this form: @code{(@var{code}
. @var{symbol})}, where @var{code} is the numeric keysym code (not
including the ``vendor specific'' bit, 1 << 28), and @var{symbol} is the
name for the function key.
For example @code{(168 . mute-acute)} defines a system-specific key used
by HP X servers whose numeric code is (1 << 28) + 168.
It is not a problem if the alist defines keysyms for other X servers, as
long as they don't conflict with the ones used by the X server actually
in use.
The variable is always local to the current X terminal and cannot be
buffer-local. @xref{Multiple Displays}.
@end defvar
@end ignore
@node Flow Control
@section Flow Control
@cindex flow control characters
This section attempts to answer the question ``Why does XEmacs choose
to use flow-control characters in its command character set?'' For a
second view on this issue, read the comments on flow control in the
@file{emacs/INSTALL} file from the distribution; for help with Termcap
entries and DEC terminal concentrators, see @file{emacs/etc/TERMS}.
@cindex @kbd{C-s}
@cindex @kbd{C-q}
At one time, most terminals did not need flow control, and none used
@code{C-s} and @kbd{C-q} for flow control. Therefore, the choice of
@kbd{C-s} and @kbd{C-q} as command characters was uncontroversial.
XEmacs, for economy of keystrokes and portability, used nearly all the
@sc{ASCII} control characters, with mnemonic meanings when possible;
thus, @kbd{C-s} for search and @kbd{C-q} for quote.
Later, some terminals were introduced which required these characters
for flow control. They were not very good terminals for full-screen
editing, so XEmacs maintainers did not pay attention. In later years,
flow control with @kbd{C-s} and @kbd{C-q} became widespread among
terminals, but by this time it was usually an option. And the majority
of users, who can turn flow control off, were unwilling to switch to
less mnemonic key bindings for the sake of flow control.
So which usage is ``right'', XEmacs's or that of some terminal and
concentrator manufacturers? This question has no simple answer.
One reason why we are reluctant to cater to the problems caused by
@kbd{C-s} and @kbd{C-q} is that they are gratuitous. There are other
techniques (albeit less common in practice) for flow control that
preserve transparency of the character stream. Note also that their use
for flow control is not an official standard. Interestingly, on the
model 33 teletype with a paper tape punch (which is very old), @kbd{C-s}
and @kbd{C-q} were sent by the computer to turn the punch on and off!
As X servers and other window systems replace character-only
terminals, this problem is gradually being cured. For the mean time,
XEmacs provides a convenient way of enabling flow control if you want it:
call the function @code{enable-flow-control}.
@defun enable-flow-control
This function enables use of @kbd{C-s} and @kbd{C-q} for output flow
control, and provides the characters @kbd{C-\} and @kbd{C-^} as aliases
for them using @code{keyboard-translate-table} (@pxref{Translating Input}).
@end defun
You can use the function @code{enable-flow-control-on} in your
@file{.emacs} file to enable flow control automatically on certain
terminal types.
@defun enable-flow-control-on &rest termtypes
This function enables flow control, and the aliases @kbd{C-\} and @kbd{C-^},
if the terminal type is one of @var{termtypes}. For example:
@smallexample
(enable-flow-control-on "vt200" "vt300" "vt101" "vt131")
@end smallexample
@end defun
Here is how @code{enable-flow-control} does its job:
@enumerate
@item
@cindex @sc{cbreak}
It sets @sc{cbreak} mode for terminal input, and tells the operating
system to handle flow control, with @code{(set-input-mode nil t)}.
@item
It sets up @code{keyboard-translate-table} to translate @kbd{C-\} and
@kbd{C-^} into @kbd{C-s} and @kbd{C-q}. Except at its very
lowest level, XEmacs never knows that the characters typed were anything
but @kbd{C-s} and @kbd{C-q}, so you can in effect type them as @kbd{C-\}
and @kbd{C-^} even when they are input for other commands.
@xref{Translating Input}.
@end enumerate
If the terminal is the source of the flow control characters, then once
you enable kernel flow control handling, you probably can make do with
less padding than normal for that terminal. You can reduce the amount
of padding by customizing the Termcap entry. You can also reduce it by
setting @code{baud-rate} to a smaller value so that XEmacs uses a smaller
speed when calculating the padding needed. @xref{Terminal Output}.
@node Batch Mode
@section Batch Mode
@cindex batch mode
@cindex noninteractive use
The command line option @samp{-batch} causes XEmacs to run
noninteractively. In this mode, XEmacs does not read commands from the
terminal, it does not alter the terminal modes, and it does not expect
to be outputting to an erasable screen. The idea is that you specify
Lisp programs to run; when they are finished, XEmacs should exit. The
way to specify the programs to run is with @samp{-l @var{file}}, which
loads the library named @var{file}, and @samp{-f @var{function}}, which
calls @var{function} with no arguments.
Any Lisp program output that would normally go to the echo area,
either using @code{message} or using @code{prin1}, etc., with @code{t}
as the stream, goes instead to XEmacs's standard error descriptor when
in batch mode. Thus, XEmacs behaves much like a noninteractive
application program. (The echo area output that XEmacs itself normally
generates, such as command echoing, is suppressed entirely.)
@defun noninteractive
This function returns non-@code{nil} when XEmacs is running in batch mode.
@end defun
@defvar noninteractive
This variable is non-@code{nil} when XEmacs is running in batch mode.
Setting this variable to @code{nil}, however, will not change whether
XEmacs is running in batch mode, and will not change the return value
of the @code{noninteractive} function.
@end defvar
|