File: search.texi

package info (click to toggle)
xemacs20 20.4-13
  • links: PTS
  • area: main
  • in suites: slink
  • size: 67,324 kB
  • ctags: 57,643
  • sloc: lisp: 586,197; ansic: 184,662; sh: 4,296; asm: 3,179; makefile: 2,021; perl: 1,059; csh: 96; sed: 22
file content (883 lines) | stat: -rw-r--r-- 37,507 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883

@node Search, Fixit, Display, Top
@chapter Searching and Replacement
@cindex searching

  Like other editors, Emacs has commands for searching for occurrences of
a string.  The principal search command is unusual in that it is
@dfn{incremental}: it begins to search before you have finished typing the
search string.  There are also non-incremental search commands more like
those of other editors.

  Besides the usual @code{replace-string} command that finds all
occurrences of one string and replaces them with another, Emacs has a fancy
replacement command called @code{query-replace} which asks interactively
which occurrences to replace.

@menu
* Incremental Search::     Search happens as you type the string.
* Non-Incremental Search:: Specify entire string and then search.
* Word Search::            Search for sequence of words.
* Regexp Search::          Search for match for a regexp.
* Regexps::                Syntax of regular expressions.
* Search Case::            To ignore case while searching, or not.
* Replace::                Search, and replace some or all matches.
* Other Repeating Search:: Operating on all matches for some regexp.
@end menu

@node Incremental Search, Non-Incremental Search, Search, Search
@section Incremental Search

  An incremental search begins searching as soon as you type the first
character of the search string.  As you type in the search string, Emacs
shows you where the string (as you have typed it so far) is found.
When you have typed enough characters to identify the place you want, you
can stop.  Depending on what you do next, you may or may not need to
terminate the search explicitly with a @key{RET}.

@c WideCommands
@table @kbd
@item C-s
Incremental search forward (@code{isearch-forward}).
@item C-r
Incremental search backward (@code{isearch-backward}).
@end table

@kindex C-s
@kindex C-r
@findex isearch-forward
@findex isearch-backward
  @kbd{C-s} starts an incremental search.  @kbd{C-s} reads characters from
the keyboard and positions the cursor at the first occurrence of the
characters that you have typed.  If you type @kbd{C-s} and then @kbd{F},
the cursor moves right after the first @samp{F}.  Type an @kbd{O}, and see
the cursor move to after the first @samp{FO}.  After another @kbd{O}, the
cursor is after the first @samp{FOO} after the place where you started the
search.  Meanwhile, the search string @samp{FOO} has been echoed in the
echo area.@refill

  The echo area display ends with three dots when actual searching is going
on.  When search is waiting for more input, the three dots are removed.
(On slow terminals, the three dots are not displayed.)

  If you make a mistake in typing the search string, you can erase
characters with @key{DEL}.  Each @key{DEL} cancels the last character of the
search string.  This does not happen until Emacs is ready to read another
input character; first it must either find, or fail to find, the character
you want to erase.  If you do not want to wait for this to happen, use
@kbd{C-g} as described below.@refill

  When you are satisfied with the place you have reached, you can type
@key{RET} (or @key{C-m}), which stops searching, leaving the cursor where 
the search brought it.  Any command not specially meaningful in searches also
stops the search and is then executed.  Thus, typing @kbd{C-a} exits the
search and then moves to the beginning of the line.  @key{RET} is necessary
only if the next command you want to type is a printing character,
@key{DEL}, @key{ESC}, or another control character that is special
within searches (@kbd{C-q}, @kbd{C-w}, @kbd{C-r}, @kbd{C-s}, or @kbd{C-y}).

  Sometimes you search for @samp{FOO} and find it, but were actually
looking for a different occurance of it.  To move to the next occurrence
of the search string, type another @kbd{C-s}.  Do this as often as
necessary.  If you overshoot, you can cancel some @kbd{C-s}
characters with @key{DEL}.

  After you exit a search, you can search for the same string again by
typing just @kbd{C-s C-s}: the first @kbd{C-s} is the key that invokes
incremental search, and the second @kbd{C-s} means ``search again''.

  If the specified string is not found at all, the echo area displays
the text @samp{Failing I-Search}.  The cursor is after the place where
Emacs found as much of your string as it could.  Thus, if you search for
@samp{FOOT}, and there is no @samp{FOOT}, the cursor may be after the
@samp{FOO} in @samp{FOOL}.  At this point there are several things you
can do.  If you mistyped the search string, correct it.  If you like the
place you have found, you can type @key{RET} or some other Emacs command
to ``accept what the search offered''.  Or you can type @kbd{C-g}, which
removes from the search string the characters that could not be found
(the @samp{T} in @samp{FOOT}), leaving those that were found (the
@samp{FOO} in @samp{FOOT}).  A second @kbd{C-g} at that point cancels
the search entirely, returning point to where it was when the search
started.

  If a search is failing and you ask to repeat it by typing another
@kbd{C-s}, it starts again from the beginning of the buffer.  Repeating
a failing backward search with @kbd{C-r} starts again from the end.  This
is called @dfn{wrapping around}.  @samp{Wrapped} appears in the search
prompt once this has happened.

@cindex quitting (in search)
  The @kbd{C-g} ``quit'' character does special things during searches;
just what it does depends on the status of the search.  If the search has
found what you specified and is waiting for input, @kbd{C-g} cancels the
entire search.  The cursor moves back to where you started the search.  If
@kbd{C-g} is typed when there are characters in the search string that have
not been found---because Emacs is still searching for them, or because it
has failed to find them---then the search string characters which have not
been found are discarded from the search string.  The
search is now successful and waiting for more input, so a second @kbd{C-g}
cancels the entire search.

  To search for a control character such as @kbd{C-s} or @key{DEL} or
@key{ESC}, you must quote it by typing @kbd{C-q} first.  This function
of @kbd{C-q} is analogous to its meaning as an Emacs command: it causes
the following character to be treated the way a graphic character would
normally be treated in the same context.

 To search backwards, you can use @kbd{C-r} instead of @kbd{C-s} to
start the search; @kbd{C-r} is the key that runs the command
(@code{isearch-backward}) to search backward.  You can also use
@kbd{C-r} to change from searching forward to searching backwards.  Do
this if a search fails because the place you started was too far down in the
file.  Repeated @kbd{C-r} keeps looking for more occurrences backwards.
@kbd{C-s} starts going forward again.  You can cancel @kbd{C-r} in a
search with @key{DEL}.

  The characters @kbd{C-y} and @kbd{C-w} can be used in incremental search
to grab text from the buffer into the search string.  This makes it
convenient to search for another occurrence of text at point.  @kbd{C-w}
copies the word after point as part of the search string, advancing
point over that word.  Another @kbd{C-s} to repeat the search will then
search for a string including that word.  @kbd{C-y} is similar to @kbd{C-w}
but copies the rest of the current line into the search string.

  The characters @kbd{M-p} and @kbd{M-n} can be used in an incremental
search to recall things which you have searched for in the past.  A
list of the last 16 things you have searched for is retained, and 
@kbd{M-p} and @kbd{M-n} let you cycle through that ring.

The character @kbd{M-@key{TAB}} does completion on the elements in 
the search history ring.  For example, if you know that you have
recently searched for the string @code{POTATOE}, you could type
@kbd{C-s P O M-@key{TAB}}.  If you had searched for other strings
beginning with @code{PO} then you would be shown a list of them, and
would need to type more to select one. 

  You can change any of the special characters in incremental search via
the normal keybinding mechanism: simply add a binding to the 
@code{isearch-mode-map}.  For example, to make the character
@kbd{C-b} mean ``search backwards'' while in isearch-mode, do this:

@example
(define-key isearch-mode-map "\C-b" 'isearch-repeat-backward)
@end example

These are the default bindings of isearch-mode:

@findex isearch-delete-char
@findex isearch-exit
@findex isearch-quote-char
@findex isearch-repeat-forward
@findex isearch-repeat-backward
@findex isearch-yank-line
@findex isearch-yank-word
@findex isearch-abort
@findex isearch-ring-retreat
@findex isearch-ring-advance
@findex isearch-complete

@kindex DEL (isearch-mode)
@kindex RET (isearch-mode)
@kindex C-q (isearch-mode)
@kindex C-s (isearch-mode)
@kindex C-r (isearch-mode)
@kindex C-y (isearch-mode)
@kindex C-w (isearch-mode)
@kindex C-g (isearch-mode)
@kindex M-p (isearch-mode)
@kindex M-n (isearch-mode)
@kindex M-TAB (isearch-mode)

@table @kbd
@item DEL
Delete a character from the incremental search string (@code{isearch-delete-char}).
@item RET
Exit incremental search (@code{isearch-exit}).
@item C-q
Quote special characters for incremental search (@code{isearch-quote-char}).
@item C-s
Repeat incremental search forward (@code{isearch-repeat-forward}).
@item C-r
Repeat incremental search backward (@code{isearch-repeat-backward}).
@item C-y
Pull rest of line from buffer into search string (@code{isearch-yank-line}).
@item C-w
Pull next word from buffer into search string (@code{isearch-yank-word}).
@item C-g
Cancels input back to what has been found successfully, or aborts the 
isearch (@code{isearch-abort}).
@item M-p
Recall the previous element in the isearch history ring 
(@code{isearch-ring-retreat}).
@item M-n
Recall the next element in the isearch history ring 
(@code{isearch-ring-advance}).
@item M-@key{TAB}
Do completion on the elements in the isearch history ring 
(@code{isearch-complete}).

@end table

Any other character which is normally inserted into a buffer when typed
is automatically added to the search string in isearch-mode.

@subsection Slow Terminal Incremental Search

  Incremental search on a slow terminal uses a modified style of display
that is designed to take less time.  Instead of redisplaying the buffer at
each place the search gets to, it creates a new single-line window and uses
that to display the line the search has found.  The single-line window
appears as soon as point gets outside of the text that is already
on the screen.

  When the search is terminated, the single-line window is removed.  Only
at this time the window in which the search was done is redisplayed to show
its new value of point.

  The three dots at the end of the search string, normally used to indicate
that searching is going on, are not displayed in slow style display.

@vindex search-slow-speed
  The slow terminal style of display is used when the terminal baud rate is
less than or equal to the value of the variable @code{search-slow-speed},
initially 1200.

@vindex search-slow-window-lines
  The number of lines to use in slow terminal search display is controlled
by the variable @code{search-slow-window-lines}.  Its normal value is 1.

@node Non-Incremental Search, Word Search, Incremental Search, Search
@section Non-Incremental Search
@cindex non-incremental search

  Emacs also has conventional non-incremental search commands, which require
you type the entire search string before searching begins.

@table @kbd
@item C-s @key{RET} @var{string} @key{RET}
Search for @var{string}.
@item C-r @key{RET} @var{string} @key{RET}
Search backward for @var{string}.
@end table

  To do a non-incremental search, first type @kbd{C-s @key{RET}}
(or @kbd{C-s C-m}).  This enters the minibuffer to read the search string.
Terminate the string with @key{RET} to start the search.  If the string
is not found, the search command gets an error.

 By default, @kbd{C-s} invokes incremental search, but if you give it an
empty argument, which would otherwise be useless, it invokes non-incremental
search.  Therefore, @kbd{C-s @key{RET}} invokes non-incremental search. 
@kbd{C-r @key{RET}} also works this way.

@findex search-forward
@findex search-backward
  Forward and backward non-incremental searches are implemented by the
commands @code{search-forward} and @code{search-backward}.  You can bind
these commands to keys.  The reason that incremental
search is programmed to invoke them as well is that @kbd{C-s @key{RET}}
is the traditional sequence of characters used in Emacs to invoke
non-incremental search.

 Non-incremental searches performed using @kbd{C-s @key{RET}} do
not call @code{search-forward} right away.  They first check
if the next character is @kbd{C-w}, which requests a word search.
@ifinfo
@xref{Word Search}.
@end ifinfo

@node Word Search, Regexp Search, Non-Incremental Search, Search
@section Word Search
@cindex word search

  Word search looks for a sequence of words without regard to how the
words are separated.  More precisely, you type a string of many words,
using single spaces to separate them, and the string is found even if
there are multiple spaces, newlines or other punctuation between the words.

  Word search is useful in editing documents formatted by text formatters.
If you edit while looking at the printed, formatted version, you can't tell
where the line breaks are in the source file.  Word search, allows you
to search  without having to know the line breaks.

@table @kbd
@item C-s @key{RET} C-w @var{words} @key{RET}
Search for @var{words}, ignoring differences in punctuation.
@item C-r @key{RET} C-w @var{words} @key{RET}
Search backward for @var{words}, ignoring differences in punctuation.
@end table

  Word search is a special case of non-incremental search.  It is invoked
with @kbd{C-s @key{RET} C-w} followed by the search string, which
must always be terminated with another @key{RET}.  Being non-incremental, this
search does not start until the argument is terminated.  It works by
constructing a regular expression and searching for that.  @xref{Regexp
Search}.

 You can do a backward word search with @kbd{C-r @key{RET} C-w}.

@findex word-search-forward
@findex word-search-backward
  Forward and backward word searches are implemented by the commands
@code{word-search-forward} and @code{word-search-backward}.  You can
bind these commands to keys.  The reason that incremental
search is programmed to invoke them as well is that @kbd{C-s @key{RET} C-w}
is the traditional Emacs sequence of keys for word search.

@node Regexp Search, Regexps, Word Search, Search
@section Regular Expression Search
@cindex regular expression
@cindex regexp

  A @dfn{regular expression} (@dfn{regexp}, for short) is a pattern that
denotes a set of strings, possibly an infinite set.  Searching for matches
for a regexp is a powerful operation that editors on Unix systems have
traditionally offered.  In XEmacs, you can search for the next match for
a regexp either incrementally or not.

@kindex M-C-s
@findex isearch-forward-regexp
@findex isearch-backward-regexp
  Incremental search for a regexp is done by typing @kbd{M-C-s}
(@code{isearch-forward-regexp}).  This command reads a search string
incrementally just like @kbd{C-s}, but it treats the search string as a
regexp rather than looking for an exact match against the text in the
buffer.  Each time you add text to the search string, you make the regexp
longer, and the new regexp is searched for.  A reverse regexp search command
@code{isearch-backward-regexp} also exists, but no key runs it.

  All of the control characters that do special things within an ordinary
incremental search have the same functionality in incremental regexp search.
Typing @kbd{C-s} or @kbd{C-r} immediately after starting a search
retrieves the last incremental search regexp used:
incremental regexp and non-regexp searches have independent defaults.

@findex re-search-forward
@findex re-search-backward
  Non-incremental search for a regexp is done by the functions
@code{re-search-forward} and @code{re-search-backward}.  You can invoke
them with @kbd{M-x} or bind them to keys.  You can also call
@code{re-search-forward} by way of incremental regexp search with
@kbd{M-C-s @key{RET}}.

@node Regexps, Search Case, Regexp Search, Search
@section Syntax of Regular Expressions

Regular expressions have a syntax in which a few characters are special
constructs and the rest are @dfn{ordinary}.  An ordinary character is a
simple regular expression which matches that character and nothing else.
The special characters are @samp{$}, @samp{^}, @samp{.}, @samp{*},
@samp{+}, @samp{?}, @samp{[}, @samp{]} and @samp{\}; no new special
characters will be defined.  Any other character appearing in a regular
expression is ordinary, unless a @samp{\} precedes it.@refill

For example, @samp{f} is not a special character, so it is ordinary, and
therefore @samp{f} is a regular expression that matches the string @samp{f}
and no other string.  (It does @i{not} match the string @samp{ff}.)  Likewise,
@samp{o} is a regular expression that matches only @samp{o}.@refill

Any two regular expressions @var{a} and @var{b} can be concatenated.  The
result is a regular expression which matches a string if @var{a} matches
some amount of the beginning of that string and @var{b} matches the rest of
the string.@refill

As a simple example, you can concatenate the regular expressions @samp{f}
and @samp{o} to get the regular expression @samp{fo}, which matches only
the string @samp{fo}.  To do something nontrivial, you
need to use one of the following special characters:

@table @kbd
@item .@: @r{(Period)}
is a special character that matches any single character except a newline.
Using concatenation, you can make regular expressions like @samp{a.b}, which
matches any three-character string which begins with @samp{a} and ends with
@samp{b}.@refill

@item *
is not a construct by itself; it is a suffix, which means the
preceding regular expression is to be repeated as many times as
possible.  In @samp{fo*}, the @samp{*} applies to the @samp{o}, so
@samp{fo*} matches one @samp{f} followed by any number of @samp{o}s.
The case of zero @samp{o}s is allowed: @samp{fo*} does match
@samp{f}.@refill

@samp{*} always applies to the @i{smallest} possible preceding
expression.  Thus, @samp{fo*} has a repeating @samp{o}, not a
repeating @samp{fo}.@refill

The matcher processes a @samp{*} construct by immediately matching
as many repetitions as it can find.  Then it continues with the rest
of the pattern.  If that fails, backtracking occurs, discarding some
of the matches of the @samp{*}-modified construct in case that makes
it possible to match the rest of the pattern.  For example, matching
@samp{ca*ar} against the string @samp{caaar}, the @samp{a*} first
tries to match all three @samp{a}s; but the rest of the pattern is
@samp{ar} and there is only @samp{r} left to match, so this try fails.
The next alternative is for @samp{a*} to match only two @samp{a}s.
With this choice, the rest of the regexp matches successfully.@refill

@item +
is a suffix character similar to @samp{*} except that it requires that
the preceding expression be matched at least once.  For example,
@samp{ca+r} will match the strings @samp{car} and @samp{caaaar}
but not the string @samp{cr}, whereas @samp{ca*r} would match all
three strings.@refill

@item ?
is a suffix character similar to @samp{*} except that it can match the
preceding expression either once or not at all.  For example,
@samp{ca?r} will match @samp{car} or @samp{cr}; nothing else.

@item [ @dots{} ]
@samp{[} begins a @dfn{character set}, which is terminated by a
@samp{]}.  In the simplest case, the characters between the two form
the set.  Thus, @samp{[ad]} matches either one @samp{a} or one
@samp{d}, and @samp{[ad]*} matches any string composed of just
@samp{a}s and @samp{d}s (including the empty string), from which it
follows that @samp{c[ad]*r} matches @samp{cr}, @samp{car}, @samp{cdr},
@samp{caddaar}, etc.@refill

You can include character ranges in a character set by writing two
characters with a @samp{-} between them.  Thus, @samp{[a-z]} matches any
lower-case letter.  Ranges may be intermixed freely with individual
characters, as in @samp{[a-z$%.]}, which matches any lower-case letter
or @samp{$}, @samp{%}, or period.
@refill

Note that inside a character set the usual special characters are not
special any more.  A completely different set of special characters
exists inside character sets: @samp{]}, @samp{-}, and @samp{^}.@refill

To include a @samp{]} in a character set, you must make it the first
character.  For example, @samp{[]a]} matches @samp{]} or @samp{a}.  To
include a @samp{-}, write @samp{---}, which is a range containing only
@samp{-}.  To include @samp{^}, make it other than the first character
in the set.@refill

@item [^ @dots{} ]
@samp{[^} begins a @dfn{complement character set}, which matches any
character except the ones specified.  Thus, @samp{[^a-z0-9A-Z]}
matches all characters @i{except} letters and digits.@refill

@samp{^} is not special in a character set unless it is the first
character.  The character following the @samp{^} is treated as if it
were first (@samp{-} and @samp{]} are not special there).

Note that a complement character set can match a newline, unless
newline is mentioned as one of the characters not to match.

@item ^
is a special character that matches the empty string, but only if at
the beginning of a line in the text being matched.  Otherwise, it fails
to match anything.  Thus, @samp{^foo} matches a @samp{foo} that occurs
at the beginning of a line.

@item $
is similar to @samp{^} but matches only at the end of a line.  Thus,
@samp{xx*$} matches a string of one @samp{x} or more at the end of a line.

@item \
does two things: it quotes the special characters (including
@samp{\}), and it introduces additional special constructs.

Because @samp{\} quotes special characters, @samp{\$} is a regular
expression that matches only @samp{$}, and @samp{\[} is a regular
expression that matches only @samp{[}, and so on.@refill
@end table

Note: for historical compatibility, special characters are treated as
ordinary ones if they are in contexts where their special meanings make no
sense.  For example, @samp{*foo} treats @samp{*} as ordinary since there is
no preceding expression on which the @samp{*} can act.  It is poor practice
to depend on this behavior; better to quote the special character anyway,
regardless of where is appears.@refill

Usually, @samp{\} followed by any character matches only
that character.  However, there are several exceptions: characters
which, when preceded by @samp{\}, are special constructs.  Such
characters are always ordinary when encountered on their own.  Here
is a table of @samp{\} constructs.

@table @kbd
@item \|
specifies an alternative.
Two regular expressions @var{a} and @var{b} with @samp{\|} in
between form an expression that matches anything @var{a} or
@var{b} matches.@refill

Thus, @samp{foo\|bar} matches either @samp{foo} or @samp{bar}
but no other string.@refill

@samp{\|} applies to the largest possible surrounding expressions.  Only a
surrounding @samp{\( @dots{} \)} grouping can limit the grouping power of
@samp{\|}.@refill

Full backtracking capability exists to handle multiple uses of @samp{\|}.

@item \( @dots{} \)
is a grouping construct that serves three purposes:

@enumerate
@item
To enclose a set of @samp{\|} alternatives for other operations.
Thus, @samp{\(foo\|bar\)x} matches either @samp{foox} or @samp{barx}.

@item
To enclose a complicated expression for the postfix @samp{*} to operate on.
Thus, @samp{ba\(na\)*} matches @samp{bananana}, etc., with any (zero or
more) number of @samp{na} strings.@refill

@item
To mark a matched substring for future reference.

@end enumerate

This last application is not a consequence of the idea of a
parenthetical grouping; it is a separate feature which happens to be
assigned as a second meaning to the same @samp{\( @dots{} \)} construct
because in practice there is no conflict between the two meanings.
Here is an explanation:

@item \@var{digit}
after the end of a @samp{\( @dots{} \)} construct, the matcher remembers the
beginning and end of the text matched by that construct.  Then, later on
in the regular expression, you can use @samp{\} followed by @var{digit}
to mean ``match the same text matched the @var{digit}'th time by the
@samp{\( @dots{} \)} construct.''@refill

The strings matching the first nine @samp{\( @dots{} \)} constructs appearing
in a regular expression are assigned numbers 1 through 9 in order that the
open-parentheses appear in the regular expression.  @samp{\1} through
@samp{\9} may be used to refer to the text matched by the corresponding
@samp{\( @dots{} \)} construct.

For example, @samp{\(.*\)\1} matches any newline-free string that is
composed of two identical halves.  The @samp{\(.*\)} matches the first
half, which may be anything, but the @samp{\1} that follows must match
the same exact text.

@item \`
matches the empty string, provided it is at the beginning
of the buffer.

@item \'
matches the empty string, provided it is at the end of
the buffer.

@item \b
matches the empty string, provided it is at the beginning or
end of a word.  Thus, @samp{\bfoo\b} matches any occurrence of
@samp{foo} as a separate word.  @samp{\bballs?\b} matches
@samp{ball} or @samp{balls} as a separate word.@refill

@item \B
matches the empty string, provided it is @i{not} at the beginning or
end of a word.

@item \<
matches the empty string, provided it is at the beginning of a word.

@item \>
matches the empty string, provided it is at the end of a word.

@item \w
matches any word-constituent character.  The editor syntax table
determines which characters these are.

@item \W
matches any character that is not a word-constituent.

@item \s@var{code}
matches any character whose syntax is @var{code}.  @var{code} is a
character which represents a syntax code: thus, @samp{w} for word
constituent, @samp{-} for whitespace, @samp{(} for open-parenthesis,
etc.  @xref{Syntax}.@refill

@item \S@var{code}
matches any character whose syntax is not @var{code}.
@end table

  Here is a complicated regexp used by Emacs to recognize the end of a
sentence together with any whitespace that follows.  It is given in Lisp
syntax to enable you to distinguish the spaces from the tab characters.  In
Lisp syntax, the string constant begins and ends with a double-quote.
@samp{\"} stands for a double-quote as part of the regexp, @samp{\\} for a
backslash as part of the regexp, @samp{\t} for a tab and @samp{\n} for a
newline.

@example
"[.?!][]\"')]*\\($\\|\t\\|  \\)[ \t\n]*"
@end example

@noindent
This regexp contains four parts: a character set matching
period, @samp{?} or @samp{!}; a character set matching close-brackets,
quotes or parentheses, repeated any number of times; an alternative in
backslash-parentheses that matches end-of-line, a tab or two spaces; and
a character set matching whitespace characters, repeated any number of
times.

@node Search Case, Replace, Regexps, Search
@section Searching and Case

@vindex case-fold-search
  All searches in Emacs normally ignore the case of the text they
are searching through; if you specify searching for @samp{FOO},
@samp{Foo} and @samp{foo} are also considered a match.  Regexps, and in
particular character sets, are included: @samp{[aB]} matches @samp{a}
or @samp{A} or @samp{b} or @samp{B}.@refill

  If you want a case-sensitive search, set the variable
@code{case-fold-search} to @code{nil}.  Then all letters must match
exactly, including case. @code{case-fold-search} is a per-buffer
variable; altering it affects only the current buffer, but
there is a default value which you can change as well.  @xref{Locals}. 
You can also use @b{Case Sensitive Search} from the @b{Options} menu 
on your screen.

@node Replace, Other Repeating Search, Search Case, Search
@section Replacement Commands
@cindex replacement
@cindex string substitution
@cindex global substitution

  Global search-and-replace operations are not needed as often in Emacs as
they are in other editors, but they are available.  In addition to the
simple @code{replace-string} command which is like that found in most
editors, there is a @code{query-replace} command which asks you, for each
occurrence of a pattern, whether to replace it.

  The replace commands all replace one string (or regexp) with one
replacement string.  It is possible to perform several replacements in
parallel using the command @code{expand-region-abbrevs}.  @xref{Expanding
Abbrevs}.

@menu
* Unconditional Replace::  Replacing all matches for a string.
* Regexp Replace::         Replacing all matches for a regexp.
* Replacement and Case::   How replacements preserve case of letters.
* Query Replace::          How to use querying.
@end menu

@node Unconditional Replace, Regexp Replace, Replace, Replace
@subsection Unconditional Replacement
@findex replace-string
@findex replace-regexp

@table @kbd
@item M-x replace-string @key{RET} @var{string} @key{RET} @var{newstring} @key{RET}
Replace every occurrence of @var{string} with @var{newstring}.
@item M-x replace-regexp @key{RET} @var{regexp} @key{RET} @var{newstring} @key{RET}
Replace every match for @var{regexp} with @var{newstring}.
@end table

  To replace every instance of @samp{foo} after point with @samp{bar},
use the command @kbd{M-x replace-string} with the two arguments
@samp{foo} and @samp{bar}.  Replacement occurs only after point: if you
want to cover the whole buffer you must go to the beginning first.  By
default, all occurrences up to the end of the buffer are replaced.  To
limit replacement to part of the buffer, narrow to that part of the
buffer before doing the replacement (@pxref{Narrowing}).

  When @code{replace-string} exits, point is left at the last occurrence
replaced.  The value of point when the @code{replace-string} command was
issued is remembered on the mark ring; @kbd{C-u C-@key{SPC}} moves back
there.

  A numeric argument restricts replacement to matches that are surrounded
by word boundaries.

@node Regexp Replace, Replacement and Case, Unconditional Replace, Replace
@subsection Regexp Replacement

  @code{replace-string} replaces exact matches for a single string.  The
similar command @code{replace-regexp} replaces any match for a specified
pattern.

  In @code{replace-regexp}, the @var{newstring} need not be constant.  It
can refer to all or part of what is matched by the @var{regexp}.  @samp{\&}
in @var{newstring} stands for the entire text being replaced.
@samp{\@var{d}} in @var{newstring}, where @var{d} is a digit, stands for
whatever matched the @var{d}'th parenthesized grouping in @var{regexp}.
For example,@refill

@example
M-x replace-regexp @key{RET} c[ad]+r @key{RET} \&-safe @key{RET}
@end example

@noindent
would replace (for example) @samp{cadr} with @samp{cadr-safe} and @samp{cddr}
with @samp{cddr-safe}.

@example
M-x replace-regexp @key{RET} \(c[ad]+r\)-safe @key{RET} \1 @key{RET}
@end example

@noindent
would perform exactly the opposite replacements.  To include a @samp{\}
in the text to replace with, you must give @samp{\\}.

@node Replacement and Case, Query Replace, Regexp Replace, Replace
@subsection Replace Commands and Case

@vindex case-replace
@vindex case-fold-search
  If the arguments to a replace command are in lower case, the command
preserves case when it makes a replacement.  Thus, the following command:

@example
M-x replace-string @key{RET} foo @key{RET} bar @key{RET}
@end example

@noindent
replaces a lower-case @samp{foo} with a lower case @samp{bar}, @samp{FOO}
with @samp{BAR}, and @samp{Foo} with @samp{Bar}.  If upper-case letters are
used in the second argument, they remain upper-case every time that
argument is inserted.  If upper-case letters are used in the first
argument, the second argument is always substituted exactly as given, with
no case conversion.  Likewise, if the variable @code{case-replace} is set
to @code{nil}, replacement is done without case conversion.  If
@code{case-fold-search} is set to @code{nil}, case is significant in
matching occurrences of @samp{foo} to replace; also, case conversion of the
replacement string is not done.

@node Query Replace,, Replacement and Case, Replace
@subsection Query Replace
@cindex query replace

@table @kbd
@item M-% @var{string} @key{RET} @var{newstring} @key{RET}
@itemx M-x query-replace @key{RET} @var{string} @key{RET} @var{newstring} @key{RET}
Replace some occurrences of @var{string} with @var{newstring}.
@item M-x query-replace-regexp @key{RET} @var{regexp} @key{RET} @var{newstring} @key{RET}
Replace some matches for @var{regexp} with @var{newstring}.
@end table

@kindex M-%
@findex query-replace
  If you want to change only some of the occurrences of @samp{foo} to
@samp{bar}, not all of them, you can use @code{query-replace} instead of
@kbd{M-%}.  This command finds occurrences of @samp{foo} one by one,
displays each occurrence, and asks you whether to replace it.  A numeric
argument to @code{query-replace} tells it to consider only occurrences
that are bounded by word-delimiter characters.@refill

@findex query-replace-regexp
  Aside from querying, @code{query-replace} works just like
@code{replace-string}, and @code{query-replace-regexp} works
just like @code{replace-regexp}.@refill

  The things you can type when you are shown an occurrence of @var{string}
or a match for @var{regexp} are:

@kindex SPC (query-replace)
@kindex DEL (query-replace)
@kindex , (query-replace)
@kindex ESC (query-replace)
@kindex . (query-replace)
@kindex ! (query-replace)
@kindex ^ (query-replace)
@kindex C-r (query-replace)
@kindex C-w (query-replace)
@kindex C-l (query-replace)

@c WideCommands
@table @kbd
@item @key{SPC}
to replace the occurrence with @var{newstring}.  This preserves case, just
like @code{replace-string}, provided @code{case-replace} is non-@code{nil},
as it normally is.@refill

@item @key{DEL}
to skip to the next occurrence without replacing this one.

@item , @r{(Comma)}
to replace this occurrence and display the result.  You are then
prompted for another input character.  However, since the replacement has
already been made, @key{DEL} and @key{SPC} are equivalent.  At this
point, you can type @kbd{C-r} (see below) to alter the replaced text.  To
undo the replacement, you can type @kbd{C-x u}. 
This exits the @code{query-replace}.  If you want to do further
replacement you must use @kbd{C-x ESC} to restart (@pxref{Repetition}).

@item @key{ESC}
to exit without doing any more replacements.

@item .@: @r{(Period)}
to replace this occurrence and then exit.

@item !
to replace all remaining occurrences without asking again.

@item ^
to go back to the location of the previous occurrence (or what used to
be an occurrence), in case you changed it by mistake.  This works by
popping the mark ring.  Only one @kbd{^} in a row is allowed, because
only one previous replacement location is kept during @code{query-replace}.

@item C-r
to enter a recursive editing level, in case the occurrence needs to be
edited rather than just replaced with @var{newstring}.  When you are
done, exit the recursive editing level with @kbd{C-M-c} and the next
occurrence will be displayed.  @xref{Recursive Edit}.

@item C-w
to delete the occurrence, and then enter a recursive editing level as
in @kbd{C-r}.  Use the recursive edit to insert text to replace the
deleted occurrence of @var{string}.  When done, exit the recursive
editing level with @kbd{C-M-c} and the next occurrence will be
displayed.

@item C-l
to redisplay the screen and then give another answer.

@item C-h
to display a message summarizing these options, then give another
answer.
@end table

  If you type any other character, Emacs exits the @code{query-replace}, and
executes the character as a command.  To restart the @code{query-replace},
use @kbd{C-x @key{ESC}}, which repeats the @code{query-replace} because it
used the minibuffer to read its arguments.  @xref{Repetition, C-x ESC}.

@node Other Repeating Search,, Replace, Search
@section Other Search-and-Loop Commands

  Here are some other commands that find matches for a regular expression.
They all operate from point to the end of the buffer.

@findex list-matching-lines
@findex occur
@findex count-matches
@findex delete-non-matching-lines
@findex delete-matching-lines
@c grosscommands
@table @kbd
@item M-x occur
Print each line that follows point and contains a match for the
specified regexp.  A numeric argument specifies the number of context
lines to print before and after each matching line; the default is
none.

@kindex C-c C-c (Occur mode)
The buffer @samp{*Occur*} containing the output serves as a menu for
finding occurrences in their original context.  Find an occurrence
as listed in @samp{*Occur*}, position point there, and type @kbd{C-c
C-c}; this switches to the buffer that was searched and moves point to
the original of the same occurrence.

@item M-x list-matching-lines
Synonym for @kbd{M-x occur}.

@item M-x count-matches
Print the number of matches following point for the specified regexp.

@item M-x delete-non-matching-lines
Delete each line that follows point and does not contain a match for
the specified regexp.

@item M-x delete-matching-lines
Delete each line that follows point and contains a match for the
specified regexp.
@end table