1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
|
/* ----------------------------------------------------------------------------
* File : tree.c
* Purpose : dynamic tree program based on Sven Moen's algorithm
* ----------------------------------------------------------------------------
*/
#include "defs.h"
#include "tree.h"
#include "dbl.h"
#include "intf.h"
#include <string.h>
#include <stdlib.h>
/* ------------------------------------------------------------------------- */
/* Global Variables */
/* ------------------------------------------------------------------------- */
static int NumLines = 0;
static int NumNodes = 0;
/* ----------------------------------------------------------------------------
*
* MakeLine() allocates the memory required for a Polyline and
* initializes the fields of a Polyline to the arguments. The
* newly-allocated Polyline is returned by the function.
*
* ----------------------------------------------------------------------------
*/
Polyline*
MakeLine(short dx, short dy, Polyline *line)
{
Polyline *new_line = (Polyline *) malloc(sizeof(Polyline));
NASSERT(new_line, "could not allocate memory for polyline");
NumLines++;
new_line->dx = dx;
new_line->dy = dy;
new_line->link = line;
return new_line;
}
/* ----------------------------------------------------------------------------
*
* MakeNode() allocates the memory required for a tree node, and
* zeros out all the fields in the Node. It returns a pointer to the
* tree node upon success, and NULL upon failure.
*
* ----------------------------------------------------------------------------
*/
Tree*
MakeNode(void)
{
Tree *node = (Tree *) malloc(sizeof(Tree));
NASSERT(node, "could not allocate memory for node");
NumNodes++;
if (node == NULL)
return NULL;
else {
memset((char *) node, 0, sizeof(Tree));
return node;
}
}
/* ----------------------------------------------------------------------------
*
* MakeBridge()
*
* ----------------------------------------------------------------------------
*/
static Polyline*
MakeBridge(Polyline *line1, int x1, int y1, Polyline *line2, int x2, int y2)
{
int dx, dy, s;
Polyline *r;
dx = x2 + line2->dx - x1;
if (line2->dx == 0)
dy = line2->dy;
else {
s = dx * line2->dy;
dy = s / line2->dx;
}
r = MakeLine(dx, dy, line2->link);
line1->link = MakeLine(0, y2 + line2->dy - dy - y1, r);
return r;
}
/* ----------------------------------------------------------------------------
*
* Offset() computes the necessary offset that prevents two line segments
* from intersecting each other. This is the "heart" of the merge step
* that computes how two subtree contours should be separated.
*
* The code is taken directly from Sven Moen's paper, with changes in
* some variable names to give more meaning:
*
* - px,py indicate the x- and y-coordinates of the point on the longer
* segment if the previous Offset() call had two unequal segments
*
* - lx,ly indicate the dx and dy values of the "lower" line segment
*
* - ux,uy indicate the dx and dy values of the "upper" line segment
*
* ----------------------------------------------------------------------------
*/
static int
Offset(int px, int py, int lx, int ly, int ux, int uy)
{
int d, s, t;
if (ux <= px || px+lx <= 0)
return 0;
t = ux*ly - lx*uy;
if (t > 0) {
if (px < 0) {
s = px*ly;
d = s/lx - py;
}
else if (px > 0) {
s = px*uy;
d = s/ux - py;
}
else {
d = -py;
}
}
else {
if (ux < px+lx) {
s = (ux-px) * ly;
d = uy - (py + s/lx);
}
else if (ux > px+lx) {
s = (lx+px) * uy;
d = s/ux - (py+ly);
}
else {
d = uy - (py+ly);
}
}
return MAX(0, d);
}
/* ----------------------------------------------------------------------------
*
* Merge()
*
* ----------------------------------------------------------------------------
*/
static int
Merge(Polygon *c1, Polygon *c2)
{
int x, y, total, d;
Polyline *lower, *upper, *bridge;
x = y = total = 0;
/* compare lower part of upper child's contour
* with upper part of lower child's contour
*/
upper = c1->lower.head;
lower = c2->upper.head;
while (lower && upper) {
d = Offset(x, y, lower->dx, lower->dy, upper->dx, upper->dy);
y += d;
total += d;
if (x + lower->dx <= upper->dx) {
x += lower->dx;
y += lower->dy;
lower = lower->link;
}
else {
x -= upper->dx;
y -= upper->dy;
upper = upper->link;
}
}
if (lower) {
bridge = MakeBridge(c1->upper.tail, 0, 0, lower, x, y);
c1->upper.tail = (bridge->link) ? c2->upper.tail : bridge;
c1->lower.tail = c2->lower.tail;
}
else {
bridge = MakeBridge(c2->lower.tail, x, y, upper, 0, 0);
if (!bridge->link)
c1->lower.tail = bridge;
}
c1->lower.head = c2->lower.head;
return total;
}
/* ----------------------------------------------------------------------------
*
* DetachParent() reverses the effects of AttachParent by removing
* the four line segments that connect the subtree contour to the
* node specified by 'tree'.
*
* ----------------------------------------------------------------------------
*/
static void
DetachParent(Tree *tree)
{
free(tree->contour.upper.head->link);
free(tree->contour.upper.head);
tree->contour.upper.head = NULL;
tree->contour.upper.tail = NULL;
free(tree->contour.lower.head->link);
free(tree->contour.lower.head);
tree->contour.lower.head = NULL;
tree->contour.lower.tail = NULL;
NumLines -= 4;
}
/* ----------------------------------------------------------------------------
*
* AttachParent()
* This function also establishes the position of the first child
* The code follows Sven Moen's version, with slight modification to
* support varying borders at different levels.
*
* ----------------------------------------------------------------------------
*/
static void
AttachParent(Tree *tree, int h)
{
int x, y1, y2;
if (TreeAlignNodes)
x = tree->border + (TreeParentDistance * 2) +
(TreeParentDistance - tree->width);
else
x = tree->border + TreeParentDistance;
y2 = (h - tree->height)/2 - tree->border;
y1 = y2 + tree->height + (2 * tree->border) - h;
tree->child->offset.x = x + tree->width;
tree->child->offset.y = y1;
tree->contour.upper.head = MakeLine(tree->width, 0,
MakeLine(x, y1,
tree->contour.upper.head));
tree->contour.lower.head = MakeLine(tree->width, 0,
MakeLine(x, y2,
tree->contour.lower.head));
}
/* ----------------------------------------------------------------------------
*
* Split()
* The tree passed to Split() must have at least 1 child, because
* it doesn't make sense to split a leaf (there are no bridges)
*
* ----------------------------------------------------------------------------
*/
static void
Split(Tree *tree)
{
Tree *child;
Polyline *link;
FOREACH_CHILD(child, tree) {
if ((link = child->contour.upper.tail->link)) {
free(link->link);
free(link);
child->contour.upper.tail->link = NULL;
NumLines -= 2;
}
if ((link = child->contour.lower.tail->link)) {
free(link->link);
free(link);
NumLines -= 2;
child->contour.lower.tail->link = NULL;
}
}
}
/* ----------------------------------------------------------------------------
*
* Join() merges all subtree contours of the given tree and returns the
* height of the entire tree contour.
*
* ----------------------------------------------------------------------------
*/
static int
Join(Tree *tree)
{
Tree *child;
int d, h, sum;
/* to start, set the parent's contour and height
* to contour and height of first child
*/
child = tree->child;
tree->contour = child->contour;
sum = h = child->height + (2 * child->border);
/* extend contour to include contours of all children of parent */
for (child = child->sibling ; child ; child = child->sibling) {
d = Merge(&tree->contour, &child->contour);
child->offset.y = d + h;
child->offset.x = 0;
h = child->height + (2 * child->border);
/* keep cumulative heights of subtree contours */
sum += d + h;
}
return sum;
}
/* ----------------------------------------------------------------------------
*
* RuboutLeaf() accepts a single node (leaf) and removes its contour.
* The memory associated with the contour is deallocated.
*
* ----------------------------------------------------------------------------
*/
void
RuboutLeaf(Tree *tree)
{
free(tree->contour.upper.head);
free(tree->contour.lower.tail);
free(tree->contour.lower.head);
tree->contour.upper.head = NULL;
tree->contour.upper.tail = NULL;
tree->contour.lower.head = NULL;
tree->contour.lower.tail = NULL;
NumLines -= 3;
}
/* ----------------------------------------------------------------------------
*
* LayoutLeaf() accepts a single node (leaf) and forms its contour. This
* function assumes that the width, height, and border fields of the
* node have been assigned meaningful values.
*
* ----------------------------------------------------------------------------
*/
void
LayoutLeaf(Tree *tree)
{
tree->node_height = 0;
tree->border = TreeBorderSize;
tree->contour.upper.tail = MakeLine(tree->width + 2 * tree->border, 0,
NULL);
tree->contour.upper.head = tree->contour.upper.tail;
tree->contour.lower.tail = MakeLine(0, -tree->height - 2 * tree->border,
NULL);
tree->contour.lower.head = MakeLine(tree->width + 2 * tree->border, 0,
tree->contour.lower.tail);
}
/* ----------------------------------------------------------------------------
*
* LayoutTree() traverses the given tree (in depth-first order), and forms
* subtree or leaf contours at each node as needed. Each node's contour is
* stored in its "contour" field. Elision is also supported by generating
* the contour for both the expanded and collapsed node. This routine
* also computes the tree height of each node in the tree, so that variable
* density layout can be demonstrated.
*
* ----------------------------------------------------------------------------
*/
void
LayoutTree(Tree *tree)
{
Tree *child;
int height = 0;
FOREACH_CHILD(child, tree) {
LayoutTree(child);
if (child->elision) { /* support elision */
child->old_contour = child->contour;
LayoutLeaf(child);
}
}
if (tree->child) {
FOREACH_CHILD(child, tree)
height = MAX(child->node_height, height);
tree->node_height = height + 1;
if (TreeLayoutDensity == Fixed)
tree->border = TreeBorderSize;
else
tree->border =
(int) (TreeBorderSize * (tree->node_height * DENSITY_FACTOR));
AttachParent(tree, Join(tree));
}
else
LayoutLeaf(tree);
}
/* ------------------------------------------------------------------------- */
void
Unzip(Tree *tree)
{
Tree *child;
#ifdef INTF
if (TreeShowSteps) {
HiliteNode(tree, New);
tree->on_path = TRUE;
StatusMsg("Unzip: follow parent links up to root", 0);
Pause();
}
#endif
if (tree->parent)
Unzip(tree->parent);
if (tree->child) {
#ifdef INTF
/* draw entire contour; do it only for root, because the last
* frame drawn in this function will have already drawn the
* contour for the most recently split subtree.
*/
if (TreeShowSteps) {
if (tree->parent == NULL) {
BeginFrame();
DrawTreeContour(tree, New, CONTOUR_COLOR, FALSE, FALSE, FALSE);
DrawTree(TheTree, New);
EndFrame();
StatusMsg("Unzip: disassemble entire contour", 0);
Pause();
}
}
#endif
#ifdef INTF
/* draw contour as it would appear after DetachParent() */
if (TreeShowSteps) {
BeginFrame();
#if 0 /* mrb */
DrawTreeContour(tree, New, CONTOUR_COLOR, TRUE,
FALSE, FALSE, FALSE);
#endif
DrawTreeContour(tree, New, CONTOUR_COLOR, TRUE,
FALSE, FALSE);
DrawTree(TheTree, New);
EndFrame();
StatusMsg("Unzip: detach parent", 0);
Pause();
}
#endif
DetachParent(tree);
Split(tree);
#ifdef INTF
if (TreeShowSteps) {
BeginFrame();
/* mark other subtree contours as split, and */
/* draw only the contour on path in full */
FOREACH_CHILD(child, tree) {
if (!child->on_path)
child->split = TRUE;
else
DrawTreeContour(child, New, CONTOUR_COLOR,
FALSE, FALSE, FALSE);
}
DrawTree(TheTree, New);
EndFrame();
StatusMsg("Unzip: split tree", 0);
Pause();
}
#endif
}
else
RuboutLeaf(tree); /* leaf node */
}
/* ------------------------------------------------------------------------- */
void
Zip(Tree *tree)
{
if (tree->child)
AttachParent(tree, Join(tree));
else
LayoutLeaf(tree);
if (tree->parent)
Zip(tree->parent);
}
/* ----------------------------------------------------------------------------
*
* Insert() adds the specified child to parent, just after the specified
* sibling. If 'sibling' is Null, the child is added as the first child.
*
* ----------------------------------------------------------------------------
*/
void
Insert(Tree *parent, Tree *child, Tree *sibling)
{
Unzip(parent);
child->parent = parent;
if (sibling) {
child->sibling = sibling->sibling;
sibling->sibling = child;
}
else {
child->sibling = parent->child;
parent->child = child;
}
Zip(parent);
}
/* ----------------------------------------------------------------------------
*
* Delete() traverses the specified tree and frees all storage
* allocated to the subtree, including contours and bridges.
* If the tree had a preceding sibling, the preceding sibling is
* modified to point to the tree's succeeding sibling, if any.
*
* ----------------------------------------------------------------------------
*/
void
Delete(Tree *tree)
{
Tree *sibling = NULL;
Tree *parent, *child;
/* find sibling */
parent = tree->parent;
if (parent) {
FOREACH_CHILD(child, parent)
if (child->sibling == tree) {
sibling = child;
break;
}
}
if (sibling)
sibling->sibling = tree->sibling;
else if (parent)
parent->child = tree->sibling;
DeleteTree(tree, FALSE);
}
/* ----------------------------------------------------------------------------
*
* DeleteTree() is the recursive function that supports Delete().
* If 'contour' is True, then only the contours are recursively deleted.
* This flag should be True when you are regenerating a tree's layout
* and still want to preserve the nodes. Since contours would be deleted
* only due to a change in sibling or level distance, each node's border
* value is updated with the current value of TreeBorderSize;
*
* ----------------------------------------------------------------------------
*/
void
DeleteTree(Tree *tree, int contour)
{
Tree *child;
if (tree->elision) {
RuboutLeaf(tree);
tree->contour = tree->old_contour;
tree->old_contour.upper.head = NULL; /* flag to note 'NULL' contour */
}
if (!IS_LEAF(tree)) {
DetachParent(tree);
Split(tree);
#if 0
/* This macro makes a child->sibling reference
after the child has been deleted, so don't
use it. - kkm@kis.ru, 4/9/1998 */
FOREACH_CHILD(child,tree)
DeleteTree(child, contour);
#else
child = tree->child;
while (child)
{
Tree* next = child->sibling;
DeleteTree (child, contour);
child = next;
}
#endif
}
else
RuboutLeaf(tree);
if (contour)
tree->border = TreeBorderSize;
else {
free(tree->label.text);
free(tree);
NumNodes--;
}
}
/* ----------------------------------------------------------------------------
*
* ComputeTreeSize()
* This function should be called after tree layout.
*
* ----------------------------------------------------------------------------
*/
void
ComputeTreeSize(Tree *tree,
int *width, int *height,
int *x_offset, int *y_offset)
{
Polyline *contour, *tail;
int upper_min_y = 0, lower_max_y = 0;
int upper_abs_y = 0, lower_abs_y = 0;
int x = 0;
/* do upper contour */
contour = tree->contour.upper.head;
tail = tree->contour.upper.tail;
while (contour) {
if ((contour->dy + upper_abs_y) < upper_min_y)
upper_min_y = contour->dy + upper_abs_y;
upper_abs_y += contour->dy;
if (contour == tail)
contour = NULL;
else
contour = contour->link;
}
/* do lower contour */
contour = tree->contour.lower.head;
tail = tree->contour.lower.tail;
while (contour) {
if ((contour->dy + lower_abs_y) > lower_max_y)
lower_max_y = contour->dy + lower_abs_y;
lower_abs_y += contour->dy;
x += contour->dx;
if (contour == tail)
contour = NULL;
else
contour = contour->link;
}
*width = x + 1;
*height = lower_max_y - upper_min_y +
(tree->height + (2 * tree->border)) + 1;
if (x_offset)
*x_offset = tree->border;
if (y_offset)
*y_offset = - upper_min_y + tree->border;
}
/* ----------------------------------------------------------------------------
*
* PetrifyTree()
*
* ----------------------------------------------------------------------------
*/
void
PetrifyTree(Tree *tree, int x, int y)
{
tree->old_pos = tree->pos; /* used by AnimateTree */
/* fix position of each node */
tree->pos.x = x + tree->offset.x;
tree->pos.y = y + tree->offset.y;
if (tree->child) {
PetrifyTree(tree->child, tree->pos.x, tree->pos.y);
ComputeSubTreeExtent(tree); /* for benefit of interface picking */
}
if (tree->sibling)
PetrifyTree(tree->sibling, tree->pos.x, tree->pos.y);
}
|