1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
|
(* copyright 1999 YALE FLINT project *)
(* monnier@cs.yale.edu *)
(let val a = 1 val b = 2
val c = 3
in 1
end);
(x := 1;
case x of
FOO => 1
| BAR =>
2;
case x of
FOO => 1
| BAR =>
(case y of
FAR => 2
| FRA => 3);
hello);
let datatype foobar
= FooB of int
| FooA of bool * int
datatype foo = FOO | BAR of baz
and baz = BAZ | QUUX of foo
datatype foo = FOO
| BAR of baz
and baz = BAZ (* fixindent *)
| QUUX of foo
and b = g
datatype foo = datatype M.foo
val _ = 42 val x = 5
signature S = S' where type foo = int
val _ = 42
val foo = [
"blah"
, let val x = f 42 in g (x,x,44) end
]
val foo = [ "blah"
, let val x = f 42 in g (x,x,44) end
, foldl (fn ((p,q),s) => g (p,q,Vector.length q) ^ ":" ^ s)
"" (Beeblebrox.masterCountList mlist2)
, if null mlist2 then ";" else ""
]
fun foo (true::rest)
= 1 + 2 * foo rest
| foo (false::rest)
= let val _ = 1 in 2 end
+ 2 * foo rest
val x = if foo then
1
else if bar then
2
else
3
val y = if foo
then 1
else if foo
then 2
else 3
; val yt = 4
in
if a then b else c;
case M.find(m,f)
of SOME(fl, filt) =>
F.APP(F.VAR fl, OU.filter filt vs)
| NONE => le;
x := x + 1;
(case foo
of a => f
)
end;
let
in a;
foo("(*")
* 2;
end;
let
in a
; b
end;
let
in
a
; b
end;
let
in if a then
b
else
c
end;
let
in case a of
F => 1
| D => 2
end;
let
in case a
of F => 1
| D => 2
end;
let
in if a then b else
c
end;
structure Foo = struct
val x = 1
end
signature FSPLIT =
sig
type flint = FLINT.prog
val split: flint -> flint * flint option
end
structure FSplit :> FSPLIT =
struct
local
structure F = FLINT
structure S = IntRedBlackSet
structure M = FLINTIntMap
structure O = Option
structure OU = OptUtils
structure FU = FlintUtil
structure LT = LtyExtern
structure PO = PrimOp
structure PP = PPFlint
structure CTRL = FLINT_Control
in
val say = Control_Print.say
fun bug msg = ErrorMsg.impossible ("FSplit: "^msg)
fun buglexp (msg,le) = (say "\n"; PP.printLexp le; say " "; bug msg)
fun bugval (msg,v) = (say "\n"; PP.printSval v; say " "; bug msg)
fun assert p = if p then () else bug ("assertion failed")
type flint = F.prog
val mklv = LambdaVar.mkLvar
val cplv = LambdaVar.dupLvar
fun S_rmv(x, s) = S.delete(s, x) handle NotFound => s
fun addv (s,F.VAR lv) = S.add(s, lv)
| addv (s,_) = s
fun addvs (s,vs) = foldl (fn (v,s) => addv(s, v)) s vs
fun rmvs (s,lvs) = foldl (fn (l,s) => S_rmv(l, s)) s lvs
exception Unknown
fun split (fdec as (fk,f,args,body)) = let
val {getLty,addLty,...} = Recover.recover (fdec, false)
val m = Intmap.new(64, Unknown)
fun addpurefun f = Intmap.add m (f, false)
fun funeffect f = (Intmap.map m f) handle Uknown => true
(* sexp: env -> lexp -> (leE, leI, fvI, leRet)
* - env: IntSetF.set current environment
* - lexp: lexp expression to split
* - leRet: lexp the core return expression of lexp
* - leE: lexp -> lexp recursively split lexp: leE leRet == lexp
* - leI: lexp option inlinable part of lexp (if any)
* - fvI: IntSetF.set free variables of leI: FU.freevars leI == fvI
*
* sexp splits the lexp into an expansive part and an inlinable part.
* The inlinable part is guaranteed to be side-effect free.
* The expansive part doesn't bother to eliminate unused copies of
* elements copied to the inlinable part.
* If the inlinable part cannot be constructed, leI is set to F.RET[].
* This implies that fvI == S.empty, which in turn prevents us from
* mistakenly adding anything to leI.
*)
fun sexp env lexp = (* fixindent *)
let
(* non-side effecting binds are copied to leI if exported *)
fun let1 (le,lewrap,lv,vs,effect) =
let val (leE,leI,fvI,leRet) = sexp (S.add(env, lv)) le
val leE = lewrap o leE
in if effect orelse not (S.member(fvI, lv))
then (leE, leI, fvI, leRet)
else (leE, lewrap leI, addvs(S_rmv(lv, fvI), vs), leRet)
end
in case lexp
(* we can completely move both RET and TAPP to the I part *)
of F.RECORD (rk,vs,lv,le as F.RET [F.VAR lv']) =>
if lv' = lv
then (fn e => e, lexp, addvs(S.empty, vs), lexp)
else (fn e => e, le, S.singleton lv', le)
| F.RET vs =>
(fn e => e, lexp, addvs(S.empty, vs), lexp)
| F.TAPP (F.VAR tf,tycs) =>
(fn e => e, lexp, S.singleton tf, lexp)
(* recursive splittable lexps *)
| F.FIX (fdecs,le) => sfix env (fdecs, le)
| F.TFN (tfdec,le) => stfn env (tfdec, le)
(* binding-lexps *)
| F.CON (dc,tycs,v,lv,le) =>
let1(le, fn e => F.CON(dc, tycs, v, lv, e), lv, [v], false)
| F.RECORD (rk,vs,lv,le) =>
let1(le, fn e => F.RECORD(rk, vs, lv, e), lv, vs, false)
| F.SELECT (v,i,lv,le) =>
let1(le, fn e => F.SELECT(v, i, lv, e), lv, [v], false)
| F.PRIMOP (po,vs,lv,le) =>
let1(le, fn e => F.PRIMOP(po, vs, lv, e), lv, vs, PO.effect(#2 po))
(* IMPROVEME: lvs should not be restricted to [lv] *)
| F.LET(lvs as [lv],body as F.TAPP (v,tycs),le) =>
let1(le, fn e => F.LET(lvs, body, e), lv, [v], false)
| F.LET (lvs as [lv],body as F.APP (v as F.VAR f,vs),le) =>
let1(le, fn e => F.LET(lvs, body, e), lv, v::vs, funeffect f)
| F.SWITCH (v,ac,[(dc as F.DATAcon(_,_,lv),le)],NONE) =>
let1(le, fn e => F.SWITCH(v, ac, [(dc, e)], NONE), lv, [v], false)
| F.LET (lvs,body,le) =>
let val (leE,leI,fvI,leRet) = sexp (S.union(S.addList(S.empty, lvs), env)) le
in (fn e => F.LET(lvs, body, leE e), leI, fvI, leRet)
end
(* useless sophistication *)
| F.APP (F.VAR f,args) =>
if funeffect f
then (fn e => e, F.RET[], S.empty, lexp)
else (fn e => e, lexp, addvs(S.singleton f, args), lexp)
(* other non-binding lexps result in unsplittable functions *)
| (F.APP _ | F.TAPP _) => bug "strange (T)APP"
| (F.SWITCH _ | F.RAISE _ | F.BRANCH _ | F.HANDLE _) =>
(fn e => e, F.RET[], S.empty, lexp)
end
(* Functions definitions fall into the following categories:
* - inlinable: if exported, copy to leI
* - (mutually) recursive: don't bother
* - non-inlinable non-recursive: split recursively *)
and sfix env (fdecs,le) =
let val nenv = S.union(S.addList(S.empty, map #2 fdecs), env)
val (leE,leI,fvI,leRet) = sexp nenv le
val nleE = fn e => F.FIX(fdecs, leE e)
in case fdecs
of [({inline=inl as (F.IH_ALWAYS | F.IH_MAYBE _),...},f,args,body)] =>
let val min = case inl of F.IH_MAYBE(n,_) => n | _ => 0
in if not(S.member(fvI, f)) orelse min > !CTRL.splitThreshold
then (nleE, leI, fvI, leRet)
else (nleE, F.FIX(fdecs, leI),
rmvs(S.union(fvI, FU.freevars body),
f::(map #1 args)),
leRet)
end
| [fdec as (fk as {cconv=F.CC_FCT,...},_,_,_)] =>
sfdec env (leE,leI,fvI,leRet) fdec
| _ => (nleE, leI, fvI, leRet)
end
and sfdec env (leE,leI,fvI,leRet) (fk,f,args,body) =
let val benv = S.union(S.addList(S.empty, map #1 args), env)
val (bodyE,bodyI,fvbI,bodyRet) = sexp benv body
in case bodyI
of F.RET[] =>
(fn e => F.FIX([(fk, f, args, bodyE bodyRet)], e),
leI, fvI, leRet)
| _ =>
let val fvbIs = S.listItems(S.difference(fvbI, benv))
val (nfk,fkE) = OU.fk_wrap(fk, NONE)
(* fdecE *)
val fE = cplv f
val fErets = (map F.VAR fvbIs)
val bodyE = bodyE(F.RET fErets)
(* val tmp = mklv()
val bodyE = bodyE(F.RECORD(F.RK_STRUCT, map F.VAR fvbIs,
tmp, F.RET[F.VAR tmp])) *)
val fdecE = (fkE, fE, args, bodyE)
val fElty = LT.ltc_fct(map #2 args, map getLty fErets)
val _ = addLty(fE, fElty)
(* fdecI *)
val fkI = {inline=F.IH_ALWAYS, cconv=F.CC_FCT,
known=true, isrec=NONE}
val argsI =
(map (fn lv => (lv, getLty(F.VAR lv))) fvbIs) @ args
val fdecI as (_,fI,_,_) = FU.copyfdec(fkI,f,argsI,bodyI)
val _ = addpurefun fI
(* nfdec *)
val nargs = map (fn (v,t) => (cplv v, t)) args
val argsv = map (fn (v,t) => F.VAR v) nargs
val nbody =
let val lvs = map cplv fvbIs
in F.LET(lvs, F.APP(F.VAR fE, argsv),
F.APP(F.VAR fI, (map F.VAR lvs)@argsv))
end
(* let val lv = mklv()
in F.LET([lv], F.APP(F.VAR fE, argsv),
F.APP(F.VAR fI, (F.VAR lv)::argsv))
end *)
val nfdec = (nfk, f, nargs, nbody)
(* and now, for the whole F.FIX *)
fun nleE e =
F.FIX([fdecE], F.FIX([fdecI], F.FIX([nfdec], leE e)))
in if not(S.member(fvI, f)) then (nleE, leI, fvI, leRet)
else (nleE,
F.FIX([fdecI], F.FIX([nfdec], leI)),
S.add(S.union(S_rmv(f, fvI), S.intersection(env, fvbI)), fE),
leRet)
end
end
(* TFNs are kinda like FIX except there's no recursion *)
and stfn env (tfdec as (tfk,tf,args,body),le) =
let val (bodyE,bodyI,fvbI,bodyRet) =
if #inline tfk = F.IH_ALWAYS
then (fn e => body, body, FU.freevars body, body)
else sexp env body
val nenv = S.add(env, tf)
val (leE,leI,fvI,leRet) = sexp nenv le
in case (bodyI, S.listItems(S.difference(fvbI, env)))
of ((F.RET _ | F.RECORD(_,_,_,F.RET _)),_) =>
(* split failed *)
(fn e => F.TFN((tfk, tf, args, bodyE bodyRet), leE e),
leI, fvI, leRet)
| (_,[]) =>
(* everything was split out *)
let val ntfdec = ({inline=F.IH_ALWAYS}, tf, args, bodyE bodyRet)
val nlE = fn e => F.TFN(ntfdec, leE e)
in if not(S.member(fvI, tf)) then (nlE, leI, fvI, leRet)
else (nlE, F.TFN(ntfdec, leI),
S_rmv(tf, S.union(fvI, fvbI)), leRet)
end
| (_,fvbIs) =>
let (* tfdecE *)
val tfE = cplv tf
val tfEvs = map F.VAR fvbIs
val bodyE = bodyE(F.RET tfEvs)
val tfElty = LT.lt_nvpoly(args, map getLty tfEvs)
val _ = addLty(tfE, tfElty)
(* tfdecI *)
val tfkI = {inline=F.IH_ALWAYS}
val argsI = map (fn (v,k) => (cplv v, k)) args
(* val tmap = ListPair.map (fn (a1,a2) =>
* (#1 a1, LT.tcc_nvar(#1 a2)))
* (args, argsI) *)
val bodyI = FU.copy tmap M.empty
(F.LET(fvbIs, F.TAPP(F.VAR tfE, map #2 tmap),
bodyI))
(* F.TFN *)
fun nleE e =
F.TFN((tfk, tfE, args, bodyE),
F.TFN((tfkI, tf, argsI, bodyI), leE e))
in if not(S.member(fvI, tf)) then (nleE, leI, fvI, leRet)
else (nleE,
F.TFN((tfkI, tf, argsI, bodyI), leI),
S.add(S.union(S_rmv(tf, fvI), S.intersection(env, fvbI)), tfE),
leRet)
end
end
(* here, we use B-decomposition, so the args should not be
* considered as being in scope *)
val (bodyE,bodyI,fvbI,bodyRet) = sexp S.empty body
in case (bodyI, bodyRet)
of (F.RET _,_) => ((fk, f, args, bodyE bodyRet), NONE)
| (_,F.RECORD (rk,vs,lv,F.RET[lv'])) =>
let val fvbIs = S.listItems fvbI
(* fdecE *)
val bodyE = bodyE(F.RECORD(rk, vs@(map F.VAR fvbIs), lv, F.RET[lv']))
val fdecE as (_,fE,_,_) = (fk, cplv f, args, bodyE)
(* fdecI *)
val argI = mklv()
val argLtys = (map getLty vs) @ (map (getLty o F.VAR) fvbIs)
val argsI = [(argI, LT.ltc_str argLtys)]
val (_,bodyI) = foldl (fn (lv,(n,le)) =>
(n+1, F.SELECT(F.VAR argI, n, lv, le)))
(length vs, bodyI) fvbIs
val fdecI as (_,fI,_,_) = FU.copyfdec (fk, f, argsI, bodyI)
val nargs = map (fn (v,t) => (cplv v, t)) args
in
(fdecE, SOME fdecI)
(* ((fk, f, nargs,
F.FIX([fdecE],
F.FIX([fdecI],
F.LET([argI],
F.APP(F.VAR fE, map (F.VAR o #1) nargs),
F.APP(F.VAR fI, [F.VAR argI]))))),
NONE) *)
end
| _ => (fdec, NONE) (* sorry, can't do that *)
(* (PPFlint.printLexp bodyRet; bug "couldn't find the returned record") *)
end
end
end
|