File: listext.ml

package info (click to toggle)
xen-api-libs 0.5.2-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 1,940 kB
  • sloc: ml: 13,925; sh: 2,930; ansic: 1,699; makefile: 1,240; python: 83
file content (234 lines) | stat: -rw-r--r-- 6,147 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
(*
 * Copyright (C) 2006-2009 Citrix Systems Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation; version 2.1 only. with the special
 * exception on linking described in file LICENSE.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *)
open Fun
module List = struct include List

module Monad = Monad.M1.Make (struct

	type 'a m = 'a list

	let bind list f =
		let rec inner result = function
			| x :: xs -> inner (List.rev_append (f x) result) xs
			| [] -> List.rev result
		in
		inner [] list

	let return x = [x]

end)

(** Turn a list into a set *)
let rec setify = function
	| [] -> []
	| (x::xs) -> if mem x xs then setify xs else x::(setify xs)

let subset s1 s2 = List.fold_left (&&) true (List.map (fun s->List.mem s s2) s1)
let set_equiv s1 s2 = (subset s1 s2) && (subset s2 s1)

let iteri f list = ignore (fold_left (fun i x -> f i x; i+1) 0 list)
let iteri_right f list = ignore (fold_right (fun x i -> f i x; i+1) list 0)

let rec inv_assoc k = function
	| [] -> raise Not_found
	| (v, k') :: _ when k = k' -> v
	| _ :: t -> inv_assoc k t

(* Tail-recursive map. *)
let map_tr f l = rev (rev_map f l)

let count pred l =
	fold_left (fun count e -> count + if pred e then 1 else 0) 0 l

let position pred l =
	let aux (i, is) e = i + 1, if pred e then i :: is else is in
	snd (fold_left aux (0, []) l)

let mapi f l =
	let rec aux n = function
		| h :: t -> let h = f n h in h :: aux (n + 1) t
		| [] -> [] in
	aux 0 l

let rev_mapi f l =
	let rec aux n accu = function
		| h :: t -> aux (n + 1) (f n h :: accu) t
		| [] -> accu in
	aux 0 [] l

let mapi_tr f l = rev (rev_mapi f l)

let rec chop i l = match i, l with
	| 0, l -> [], l
	| i, h :: t -> (fun (fr, ba) -> h :: fr, ba) (chop (i - 1) t)
	| _ -> invalid_arg "chop"

let rev_chop i l =
	let rec aux i fr ba = match i, fr, ba with
		| 0, fr, ba -> (fr, ba)
		| i, fr, h :: t -> aux (i - 1) (h :: fr) t
		| _ -> invalid_arg "rev_chop" in
	aux i [] l

let chop_tr i l =
	(fun (fr, ba) -> rev fr, ba) (rev_chop i l)

let rec dice m l = match chop m l with
	| l, [] -> [l]
	| l1, l2 -> l1 :: dice m l2

let sub i j l =
	fst (chop_tr (j - i) (snd (rev_chop i l)))

let remove i l = match rev_chop i l with
	| rfr, _ :: t -> rev_append rfr t
	| _ -> invalid_arg "remove"

let extract i l = match rev_chop i l with
	| rfr, h :: t -> h, rev_append rfr t
	| _ -> invalid_arg "extract"

let insert i e l = match rev_chop i l with
	rfr, ba -> rev_append rfr (e :: ba)

let replace i e l = match rev_chop i l with
	| rfr, _ :: t -> rev_append rfr (e :: t)
	| _ -> invalid_arg "replace"

let morph i f l = match rev_chop i l with
	| rfr, h :: t -> rev_append rfr (f h :: t)
	| _ -> invalid_arg "morph"

let rec between e = function
	| [] -> []
	| [h] -> [h]
	| h :: t -> h :: e :: between e t


let between_tr e l =
	let rec aux accu e = function
		| [] -> rev accu
		| [h] -> rev (h :: accu)
		| h :: t -> aux (e :: h :: accu) e t in
	aux [] e l

let randomize l =
	let extract_rand l = extract (Random.int (length l)) l in
	let rec aux accu = function
		| [] -> accu
		| l -> (fun (h, t) -> aux (h :: accu) t) (extract_rand l) in
	aux [] l

let rec distribute e = function
	| (h :: t) as l ->
		(e :: l) :: (map (fun x -> h :: x) (distribute e t))
	| [] -> [ [ e ] ]

let rec permute = function
	| e :: rest -> flatten (map (distribute e) (permute rest))
	| [] -> [ [] ]

let rec aux_rle_eq eq l2 x n = function
	| [] -> rev ((x, n) :: l2)
	| h :: t when eq x h -> aux_rle_eq eq l2 x (n + 1) t
	| h :: t -> aux_rle_eq eq ((x, n) :: l2) h 1 t

let rle_eq eq l =
	match l with [] -> [] | h :: t -> aux_rle_eq eq [] h 1 t

let rle l = rle_eq ( = ) l

let unrle l =
	let rec aux2 accu i c = match i with
		| 0 -> accu
		| i when i>0 -> aux2 (c :: accu) (i - 1) c
		| _ -> invalid_arg "unrle" in
	let rec aux accu = function
		| [] -> rev accu
		| (i, c) :: t -> aux (aux2 accu i c) t in
	aux [] l

let inner fold_left2 base f l1 l2 g =
	fold_left2 (fun accu e1 e2 -> g accu (f e1 e2)) base l1 l2

let rec is_sorted compare list =
	match list with
		| x :: y :: list ->
			if compare x y <= 0
				then is_sorted compare (y :: list)
				else false
		| _ ->
			true

let intersect xs ys = List.filter (fun x -> List.mem x ys) xs

let set_difference a b = List.filter (fun x -> not(List.mem x b)) a

let assoc_default k l d =
  if List.mem_assoc k l then List.assoc k l else d

let map_assoc_with_key op al =
	List.map (fun (k, v1) -> (k, op k v1)) al

(* Like the Lisp cons *)
let cons a b = a :: b

(* Could use fold_left to get the same value, but that would necessarily go through the whole list everytime, instead of the first n items, only. *)
(* ToDo: This is complicated enough to warrant a test. *)
(* Is it wise to fail silently on negative values?  (They are treated as zero, here.)
   Pro: Would mask fewer bugs.
   Con: Less robust.
*)
let take n list =
	let rec helper i acc list =
	if i <= 0 || list = []
	then acc
	else helper (i-1)  (List.hd list :: acc) (List.tl list)
	in List.rev $ helper n [] list

(* Thanks to sharing we only use linear space. (Roughly double the space needed for the spine of the original list) *)
let rec tails = function
	| [] -> [[]]
	| (_::xs) as l -> l :: tails xs

let safe_hd = function
	| a::_ -> Some a
	| [] -> None

let rec replace_assoc key new_value = function
	| [] -> []
	| (k, _) as p :: tl ->
		if k = key then
			(key, new_value) :: tl
		else
			p :: replace_assoc key new_value tl

let make_assoc op l = map (fun key -> key, op key) l

let unbox_list a = List.map Opt.unbox (List.filter Opt.is_boxed a)

let filter_map f list =
	(unbox_list +++ map) f list

let restrict_with_default default keys al =
	make_assoc (fun k -> assoc_default k al default) keys

let range lower =
	let rec aux accu upper =
		if lower >= upper
		then accu
		else aux (upper-1::accu) (upper-1) in
	aux []

end