1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
|
#include <stdio.h>
#include <math.h>
#include "P_.h"
#include "astro.h"
static void precess_hiprec P_((double mjd1, double mjd2, double *ra,
double *dec));
#define DCOS(x) cos(degrad(x))
#define DSIN(x) sin(degrad(x))
#define DASIN(x) raddeg(asin(x))
#define DATAN2(y,x) raddeg(atan2((y),(x)))
/* corrects ra and dec, both in radians, for precession from epoch 1 to epoch 2.
* the epochs are given by their modified JDs, mjd1 and mjd2, respectively.
* N.B. ra and dec are modifed IN PLACE.
*/
void
precess (mjd1, mjd2, ra, dec)
double mjd1, mjd2; /* initial and final epoch modified JDs */
double *ra, *dec; /* ra/dec for mjd1 in, for mjd2 out */
{
precess_hiprec (mjd1, mjd2, ra, dec);
}
/*
* Copyright (c) 1990 by Craig Counterman. All rights reserved.
*
* This software may be redistributed freely, not sold.
* This copyright notice and disclaimer of warranty must remain
* unchanged.
*
* No representation is made about the suitability of this
* software for any purpose. It is provided "as is" without express or
* implied warranty, to the extent permitted by applicable law.
*
* Rigorous precession. From Astronomical Ephemeris 1989, p. B18
*
* 96-06-20 Hayo Hase <hase@wettzell.ifag.de>: theta_a corrected
*/
static void
precess_hiprec (mjd1, mjd2, ra, dec)
double mjd1, mjd2; /* initial and final epoch modified JDs */
double *ra, *dec; /* ra/dec for mjd1 in, for mjd2 out */
{
static double last_mjd1 = -213.432, last_from;
static double last_mjd2 = -213.432, last_to;
double zeta_A, z_A, theta_A;
double T;
double A, B, C;
double alpha, delta;
double alpha_in, delta_in;
double from_equinox, to_equinox;
double alpha2000, delta2000;
/* convert mjds to years;
* avoid the remarkably expensive calls to mjd_year()
*/
if (last_mjd1 == mjd1)
from_equinox = last_from;
else {
mjd_year (mjd1, &from_equinox);
last_mjd1 = mjd1;
last_from = from_equinox;
}
if (last_mjd2 == mjd2)
to_equinox = last_to;
else {
mjd_year (mjd2, &to_equinox);
last_mjd2 = mjd2;
last_to = to_equinox;
}
/* convert coords in rads to degs */
alpha_in = raddeg(*ra);
delta_in = raddeg(*dec);
/* precession progresses about 1 arc second in .047 years */
/* From from_equinox to 2000.0 */
if (fabs (from_equinox-2000.0) > .04) {
T = (from_equinox - 2000.0)/100.0;
zeta_A = 0.6406161* T + 0.0000839* T*T + 0.0000050* T*T*T;
z_A = 0.6406161* T + 0.0003041* T*T + 0.0000051* T*T*T;
theta_A = 0.5567530* T - 0.0001185* T*T - 0.0000116* T*T*T;
A = DSIN(alpha_in - z_A) * DCOS(delta_in);
B = DCOS(alpha_in - z_A) * DCOS(theta_A) * DCOS(delta_in)
+ DSIN(theta_A) * DSIN(delta_in);
C = -DCOS(alpha_in - z_A) * DSIN(theta_A) * DCOS(delta_in)
+ DCOS(theta_A) * DSIN(delta_in);
alpha2000 = DATAN2(A,B) - zeta_A;
range (&alpha2000, 360.0);
delta2000 = DASIN(C);
} else {
/* should get the same answer, but this could improve accruacy */
alpha2000 = alpha_in;
delta2000 = delta_in;
};
/* From 2000.0 to to_equinox */
if (fabs (to_equinox - 2000.0) > .04) {
T = (to_equinox - 2000.0)/100.0;
zeta_A = 0.6406161* T + 0.0000839* T*T + 0.0000050* T*T*T;
z_A = 0.6406161* T + 0.0003041* T*T + 0.0000051* T*T*T;
theta_A = 0.5567530* T - 0.0001185* T*T - 0.0000116* T*T*T;
A = DSIN(alpha2000 + zeta_A) * DCOS(delta2000);
B = DCOS(alpha2000 + zeta_A) * DCOS(theta_A) * DCOS(delta2000)
- DSIN(theta_A) * DSIN(delta2000);
C = DCOS(alpha2000 + zeta_A) * DSIN(theta_A) * DCOS(delta2000)
+ DCOS(theta_A) * DSIN(delta2000);
alpha = DATAN2(A,B) + z_A;
range(&alpha, 360.0);
delta = DASIN(C);
} else {
/* should get the same answer, but this could improve accruacy */
alpha = alpha2000;
delta = delta2000;
};
*ra = degrad(alpha);
*dec = degrad(delta);
}
#if 0
static void
precess_fast (mjd1, mjd2, ra, dec)
double mjd1, mjd2; /* initial and final epoch modified JDs */
double *ra, *dec; /* ra/dec for mjd1 in, for mjd2 out */
{
#define N degrad (20.0468/3600.0)
#define M hrrad (3.07234/3600.0)
double nyrs;
nyrs = (mjd2 - mjd1)/365.2425;
*dec += N * cos(*ra) * nyrs;
*ra += (M + (N * sin(*ra) * tan(*dec))) * nyrs;
range (ra, 2.0*PI);
}
#endif
|