1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<!-- Copyright (c) Christian OBRECHT 2000 -->
<html>
<head>
<title>Samples</title>
<meta http-equiv=Content-Type content="text/html; charset=iso-8859-1">
<meta name="description" content="Samples">
<meta name="keywords" content="euklides geometry tex latex samples">
<meta name="nameAutor" content="Christian OBRECHT">
</head>
<body>
<center>
<img src="title.jpeg" border=0>
</center>
<br>
<h1>Samples</h1>
<p>An isosceles triangle with some of its elementary properties illustrated.
<pre>A B C isosceles ; draw(A, B, C)
H = projection(C, line(A, B)) ; draw(segment(C, H), dashed) ; mark(B, H, C, right)
mark(segment(A, C), cross) ; mark(segment(C, B), cross)
mark(B, A, C, dash) ; mark(C, B, A, dash)
</pre>
<center><img src="fig1.jpeg" border=0></center>
<p>A figure illustrating a property of the incircle of a triangle.
<pre>A B C triangle ; draw(A, B, C) ; draw(incircle(A, B, C))
draw(bissector(B, A, C), dotted)
draw(bissector(A, B, C), dotted)
draw(bissector(B, C, A), dotted)
</pre>
<center><img src="fig2.jpeg" border=0></center>
<p>Addition of two vectors.
<pre>A B C D parallelogram
draw(segment(A, B), full, arrow) ; draw(segment(A, C), full, arrow) ; draw(segment(A, D), full, arrow)
draw(segment(B, C), dotted) ; draw(segment(D, C), dotted)
</pre>
<center><img src="fig3.jpeg" border=0></center>
<p>An angle property of parallelograms.
<pre>A B C D parallelogram(5, 4, 105:) ; draw(A, B, C, D)
mark(B, A, D) ; mark(D, C, B)
mark(C, B, A, double) ; mark(A, D, C, double)
</pre>
<center><img src="fig4.jpeg" border=0></center>
<p>An hexagon and its diagonals.
<pre>A B C D E F hexagon(point(3,2), 3, 0:) ; draw(A, B, C, D, E, F)
draw(segment(A, D), dotted)
draw(segment(B, E), dotted)
draw(segment(C, F), dotted)
</pre>
<center><img src="fig5.jpeg" border=0></center>
</body></html>
|