File: samples.html

package info (click to toggle)
xeukleides 0.9.0-2
  • links: PTS
  • area: main
  • in suites: woody
  • size: 692 kB
  • ctags: 655
  • sloc: ansic: 3,704; yacc: 1,434; lex: 894; makefile: 178
file content (69 lines) | stat: -rw-r--r-- 1,865 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<!-- Copyright (c) Christian OBRECHT 2000 -->
<html>
<head>
<title>Samples</title>
<meta http-equiv=Content-Type content="text/html; charset=iso-8859-1">
<meta name="description" content="Samples">
<meta name="keywords" content="euklides geometry tex latex samples">
<meta name="nameAutor" content="Christian OBRECHT">
</head>
<body>
<center>
<img src="title.jpeg" border=0>
</center>
<br>
<h1>Samples</h1>

<p>An isosceles triangle with some of its elementary properties illustrated.

<pre>A B C isosceles ; draw(A, B, C)
H = projection(C, line(A, B)) ; draw(segment(C, H), dashed) ; mark(B, H, C, right)
mark(segment(A, C), cross) ; mark(segment(C, B), cross)
mark(B, A, C, dash) ; mark(C, B, A, dash)
</pre>

<center><img src="fig1.jpeg" border=0></center>

<p>A figure illustrating a property of the incircle of a triangle.

<pre>A B C triangle ; draw(A, B, C) ; draw(incircle(A, B, C))
draw(bissector(B, A, C), dotted)
draw(bissector(A, B, C), dotted)
draw(bissector(B, C, A), dotted)
</pre>

<center><img src="fig2.jpeg" border=0></center>

<p>Addition of two vectors.

<pre>A B C D parallelogram
draw(segment(A, B), full, arrow) ; draw(segment(A, C), full, arrow) ; draw(segment(A, D), full, arrow)
draw(segment(B, C), dotted) ; draw(segment(D, C), dotted)
</pre>

<center><img src="fig3.jpeg" border=0></center>

<p>An angle property of parallelograms.

<pre>A B C D parallelogram(5, 4, 105:) ; draw(A, B, C, D)
mark(B, A, D) ; mark(D, C, B)
mark(C, B, A, double) ; mark(A, D, C, double)
</pre>

<center><img src="fig4.jpeg" border=0></center>

<p>An hexagon and its diagonals.

<pre>A B C D E F hexagon(point(3,2), 3, 0:) ; draw(A, B, C, D, E, F)
draw(segment(A, D), dotted)
draw(segment(B, E), dotted)
draw(segment(C, F), dotted)
</pre>

<center><img src="fig5.jpeg" border=0></center>



</body></html>