1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
|
<SCRIPT LANGUAGE="JavaScript1.1">
<!--
function doerror() {return true;};
// To avoid multiple calls with frames, only the top-most frameset calls the popup :
var nav = navigator.appName.charAt(0);
var ver = navigator.appVersion.charAt(0);
if (top==self) { // && (document.cookie.indexOf(document.location) < 0) ) {
// document.write("---"+document.cookie.indexOf(document.location)+"---");
document.cookie = "IB="+document.location;
var w,h;
var hak = 0;
if ((nav=="N" && ver < "4") || (nav=="E" && ver < "3")) {
w = 500;
h = 184;
}
else if (nav=="N") { // NS 4
w = 468;
h = 134;
}
else { // IE 4+
w = 468;
h = 134;
hak = 1;
}
var adr = "http://www.multimania.fr/general/pub/popup/perso.phtml?category=/science/sc_exacte/math&search_query=" + escape("");
window.open(
adr,
"CtrlWindow",
"width="+w+",height="+h+",toolbar=no,menubar=no,location=no,scrollbars=no,resize=no"
);
if (hak) {
window.onerror = doerror;
}
}
// -->
</SCRIPT>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<!-- Copyright (c) Christian OBRECHT 2000 -->
<html>
<head>
<title>Samples</title>
<meta http-equiv=Content-Type content="text/html; charset=iso-8859-1">
<meta name="description" content="Samples">
<meta name="keywords" content="euklides geometry tex latex samples">
<meta name="nameAutor" content="Christian OBRECHT">
</head>
<body>
<center>
<img src="title.jpeg" border=0>
</center>
<br>
<h1>Samples</h1>
<p>An isosceles triangle with some of its elementary properties illustrated.
<pre>A B C isosceles ; draw(A, B, C)
H = projection(C, line(A, B)) ; draw(segment(C, H), dashed) ; mark(B, H, C, right)
mark(segment(A, C), cross) ; mark(segment(C, B), cross)
mark(B, A, C, dash) ; mark(C, B, A, dash)
</pre>
<center><img src="fig1.jpeg" border=0></center>
<p>A figure illustrating a property of the incircle of a triangle.
<pre>A B C triangle ; draw(A, B, C) ; draw(incircle(A, B, C))
draw(bissector(B, A, C), dotted)
draw(bissector(A, B, C), dotted)
draw(bissector(B, C, A), dotted)
</pre>
<center><img src="fig2.jpeg" border=0></center>
<p>Addition of two vectors.
<pre>A B C D parallelogram
draw(segment(A, B), full, arrow) ; draw(segment(A, C), full, arrow) ; draw(segment(A, D), full, arrow)
draw(segment(B, C), dotted) ; draw(segment(D, C), dotted)
</pre>
<center><img src="fig3.jpeg" border=0></center>
<p>An angle property of parallelograms.
<pre>A B C D parallelogram(5, 4, 105:) ; draw(A, B, C, D)
mark(B, A, D) ; mark(D, C, B)
mark(C, B, A, double) ; mark(A, D, C, double)
</pre>
<center><img src="fig4.jpeg" border=0></center>
<p>An hexagon and its diagonals.
<pre>A B C D E F hexagon(point(3,2), 3, 0:) ; draw(A, B, C, D, E, F)
draw(segment(A, D), dotted)
draw(segment(B, E), dotted)
draw(segment(C, F), dotted)
</pre>
<center><img src="fig5.jpeg" border=0></center>
<br><br><hr><br>
<center>Return to the <a href="index.html">index</a>.</center>
</body></html>
|