1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
|
C***********************************************************************
C Module: mousexy.f
C
C Copyright (C) 2012 Harold Youngren, Mark Drela
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program; if not, write to the Free Software
C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C
C Report problems to: guppy@maine.com
C or drela@mit.edu
C***********************************************************************
program mousexy
c---------------------------------------------------------------
c Interactive mouse and continuous input test program.
c
c Lets user specify points in a spline, then allows the user to
c drag spline points around to change the curve
c---------------------------------------------------------------
c
parameter (ipx=100)
c
character*1 cin
c
common /Rpoints/
& ch,
& x1(ipx), y1(ipx), s1(ipx), xp1(ipx), yp1(ipx),
& x2(ipx), y2(ipx), s2(ipx), xp2(ipx), yp2(ipx)
common /Ipoints/
& iplt, n1, n2
logical lok
c
ch = 0.13
n1 = 0
n2 = 0
iplt = 0
c
1000 format(a)
C
C---Initialize the plot package before we get into plotting...
CALL PLINITIALIZE
C---put up plot window and refresh
call pltall('(terminate with q or double point)')
c
ccc call NEWFACTOR(6.0)
c
5 write(*,1050)
1050 format(/' Enter points for spline (q or ret to end)')
C--- Get initial set of points from user
call NEWCOLORNAME('green')
call NEWPEN(1)
C
xlast = -999.
ylast = -999.
ii = 0
do j = 1, 100
call GETCURSORXY(xx,yy,ikey)
cin = char(ikey)
if(cin.EQ.'q' .OR. cin.EQ.'Q') go to 100
C--- check for doubled point to end input
if( (xx-xlast).EQ.0.0 .AND.
& (yy-ylast).EQ.0.0 ) go to 100
ii = ii + 1
x1(ii) = xx
y1(ii) = yy
if(ii.EQ.1) then
call plot(xx,yy,3)
CALL PLSYMB(999.,999.,0.4*CH,2,0.0,0)
else
call plot(xlast,ylast,3)
call plot(xx,yy,2)
CALL PLSYMB(999.,999.,0.4*CH,2,0.0,0)
call PLFLUSH
endif
xlast = xx
ylast = yy
end do
C
100 n1 = ii
C
call plend
C--- initialize modified point arrays
do j = 1, n1
x2(j) = x1(j)
y2(j) = y1(j)
end do
n2 = n1
call pltall('Select point to modify ("i" to reset)')
c
write(*,*)
write(*,*) 'Move spline points...'
C
200 call GETCURSORXY(xx,yy,ikey)
cc call NEWCOLORNAME('green')
cc call plot(xx,yy,3)
cc CALL PLSYMB(999.,999.,0.4*CH,2,0.0,0)
cin = char(ikey)
write(*,*) 'ikey cin ',ikey,cin
if(cin.EQ.'q' .OR. cin.EQ.'Q') go to 400
C--- reset modified point arrays
if(cin.EQ.'i' .OR. cin.EQ.'I') then
write(*,*) 're-initializing points...'
do j = 1, n1
x2(j) = x1(j)
y2(j) = y1(j)
end do
n2 = n1
call pltall('Select point to modify ("i" to reset)')
go to 200
endif
C--- find closest point to cursor
jp = 0
dsqmin = 999.
do j = 1, n1
dsq = (xx-x2(j))**2 + (yy-y2(j))**2
if(dsq.LT.dsqmin) then
dsqmin = dsq
jp = j
endif
end do
c
write(*,*) 'Cursor at x,y ',xx,yy
write(*,*) 'Point ',jp,' selected at x,y ',x1(jp),y1(jp)
C--- now read cursor and move point
300 call GETCURSORXYC(xx,yy,ibtn)
write(*,*) xx,yy,ibtn
if(ibtn.eq.0) go to 200
x2(jp) = xx
y2(jp) = yy
n2 = n1
call pltall('Move point...("i" to reset)')
go to 300
c
400 continue
ccc pause
stop
end
subroutine pltall(msg)
character*(*) msg
parameter (ipx=100)
c
common /Rpoints/
& ch,
& x1(ipx), y1(ipx), s1(ipx), xp1(ipx), yp1(ipx),
& x2(ipx), y2(ipx), s2(ipx), xp2(ipx), yp2(ipx)
common /Ipoints/
& iplt, n1, n2
C
call PLOPEN(0.8,0,1)
CALL PLCHAR(0.5,0.5,1.2*CH,'TEST FOR MOUSE READ',0.0,-1)
CALL PLCHAR(0.3,0.3,1.2*CH,msg,0.0,-1)
ccc call PLOT(5.5, 4.25, -3)
if(n1.GT.1) then
C--- spline input curve and plot
call scalc(x1,y1,s1,n1)
call splind(x1,xp1,s1,n1,-999.,-999.)
call splind(y1,yp1,s1,n1,-999.,-999.)
C
call NEWCOLORNAME('blue')
call plot(x1(1),y1(1),3)
CALL PLSYMB(999.,999.,0.4*CH,1,0.0,0)
ninter = 10
dfn = 1.0/float(ninter)
do j = 1, n1-1
ds = s1(j+1) - s1(j)
do n = 1, ninter
ss = s1(j) + ds*float(n)*dfn
xx = seval(ss,x1,xp1,s1,n1)
yy = seval(ss,y1,yp1,s1,n1)
call plot(xx,yy,2)
end do
CALL PLSYMB(999.,999.,0.4*CH,1,0.0,0)
end do
endif
if(n2.GT.1) then
C--- spline modified curve and plot
call scalc(x2,y2,s2,n2)
call splind(x2,xp2,s2,n2,-999.,-999.)
call splind(y2,yp2,s2,n2,-999.,-999.)
C
call NEWCOLORNAME('red')
call plot(x2(1),y2(1),3)
CALL PLSYMB(999.,999.,0.4*CH,1,0.0,0)
ninter = 10
dfn = 1.0/float(ninter)
do j = 1, n2-1
ds = s2(j+1) - s2(j)
do n = 1, ninter
ss = s2(j) + ds*float(n)*dfn
xx = seval(ss,x2,xp2,s2,n2)
yy = seval(ss,y2,yp2,s2,n2)
call plot(xx,yy,2)
end do
CALL PLSYMB(999.,999.,0.4*CH,1,0.0,0)
end do
endif
call PLFLUSH
return
end
C***********************************************************************
C Module: spline.f
C
C Copyright (C) 2000 Mark Drela
C
C This program is free software; you can redistribute it and/or modify
C it under the terms of the GNU General Public License as published by
C the Free Software Foundation; either version 2 of the License, or
C (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program; if not, write to the Free Software
C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
C***********************************************************************
SUBROUTINE SPLINE(X,XS,S,N)
DIMENSION X(N),XS(N),S(N)
PARAMETER (NMAX=1000)
DIMENSION A(NMAX),B(NMAX),C(NMAX)
C-------------------------------------------------------
C Calculates spline coefficients for X(S). |
C Zero 2nd derivative end conditions are used. |
C To evaluate the spline at some value of S, |
C use SEVAL and/or DEVAL. |
C |
C S independent variable array (input) |
C X dependent variable array (input) |
C XS dX/dS array (calculated) |
C N number of points (input) |
C |
C-------------------------------------------------------
IF(N.GT.NMAX) STOP 'SPLINE: array overflow, increase NMAX'
C
DO 1 I=2, N-1
DSM = S(I) - S(I-1)
DSP = S(I+1) - S(I)
B(I) = DSP
A(I) = 2.0*(DSM+DSP)
C(I) = DSM
XS(I) = 3.0*((X(I+1)-X(I))*DSM/DSP + (X(I)-X(I-1))*DSP/DSM)
1 CONTINUE
C
C---- set zero second derivative end conditions
A(1) = 2.0
C(1) = 1.0
XS(1) = 3.0*(X(2)-X(1)) / (S(2)-S(1))
B(N) = 1.0
A(N) = 2.0
XS(N) = 3.0*(X(N)-X(N-1)) / (S(N)-S(N-1))
C
C---- solve for derivative array XS
CALL TRISOL(A,B,C,XS,N)
C
RETURN
END ! SPLINE
SUBROUTINE SPLIND(X,XS,S,N,XS1,XS2)
DIMENSION X(N),XS(N),S(N)
PARAMETER (NMAX=1000)
DIMENSION A(NMAX),B(NMAX),C(NMAX)
C-------------------------------------------------------
C Calculates spline coefficients for X(S). |
C Specified 1st derivative and/or usual zero 2nd |
C derivative end conditions are used. |
C To evaluate the spline at some value of S, |
C use SEVAL and/or DEVAL. |
C |
C S independent variable array (input) |
C X dependent variable array (input) |
C XS dX/dS array (calculated) |
C N number of points (input) |
C XS1,XS2 endpoint derivatives (input) |
C If = 999.0, then usual zero second |
C derivative end condition(s) are used |
C If = -999.0, then zero third |
C derivative end condition(s) are used |
C |
C-------------------------------------------------------
IF(N.GT.NMAX) STOP 'SPLIND: array overflow, increase NMAX'
C
DO 1 I=2, N-1
DSM = S(I) - S(I-1)
DSP = S(I+1) - S(I)
B(I) = DSP
A(I) = 2.0*(DSM+DSP)
C(I) = DSM
XS(I) = 3.0*((X(I+1)-X(I))*DSM/DSP + (X(I)-X(I-1))*DSP/DSM)
1 CONTINUE
C
IF(XS1.EQ.999.0) THEN
C----- set zero second derivative end condition
A(1) = 2.0
C(1) = 1.0
XS(1) = 3.0*(X(2)-X(1)) / (S(2)-S(1))
ELSE IF(XS1.EQ.-999.0) THEN
C----- set zero third derivative end condition
A(1) = 1.0
C(1) = 1.0
XS(1) = 2.0*(X(2)-X(1)) / (S(2)-S(1))
ELSE
C----- set specified first derivative end condition
A(1) = 1.0
C(1) = 0.
XS(1) = XS1
ENDIF
C
IF(XS2.EQ.999.0) THEN
B(N) = 1.0
A(N) = 2.0
XS(N) = 3.0*(X(N)-X(N-1)) / (S(N)-S(N-1))
ELSE IF(XS2.EQ.-999.0) THEN
B(N) = 1.0
A(N) = 1.0
XS(N) = 2.0*(X(N)-X(N-1)) / (S(N)-S(N-1))
ELSE
A(N) = 1.0
B(N) = 0.
XS(N) = XS2
ENDIF
C
IF(N.EQ.2 .AND. XS1.EQ.-999.0 .AND. XS2.EQ.-999.0) THEN
B(N) = 1.0
A(N) = 2.0
XS(N) = 3.0*(X(N)-X(N-1)) / (S(N)-S(N-1))
ENDIF
C
C---- solve for derivative array XS
CALL TRISOL(A,B,C,XS,N)
C
RETURN
END ! SPLIND
SUBROUTINE SPLINA(X,XS,S,N)
IMPLICIT REAL (A-H,O-Z)
DIMENSION X(N),XS(N),S(N)
LOGICAL LEND
C-------------------------------------------------------
C Calculates spline coefficients for X(S). |
C A simple averaging of adjacent segment slopes |
C is used to achieve non-oscillatory curve |
C End conditions are set by end segment slope |
C To evaluate the spline at some value of S, |
C use SEVAL and/or DEVAL. |
C |
C S independent variable array (input) |
C X dependent variable array (input) |
C XS dX/dS array (calculated) |
C N number of points (input) |
C |
C-------------------------------------------------------
C
LEND = .TRUE.
DO 1 I=1, N-1
DS = S(I+1)-S(I)
IF (DS.EQ.0.) THEN
XS(I) = XS1
LEND = .TRUE.
ELSE
DX = X(I+1)-X(I)
XS2 = DX / DS
IF (LEND) THEN
XS(I) = XS2
LEND = .FALSE.
ELSE
XS(I) = 0.5*(XS1 + XS2)
ENDIF
ENDIF
XS1 = XS2
1 CONTINUE
XS(N) = XS1
C
RETURN
END ! SPLINA
SUBROUTINE TRISOL(A,B,C,D,KK)
DIMENSION A(KK),B(KK),C(KK),D(KK)
C-----------------------------------------
C Solves KK long, tri-diagonal system |
C |
C A C D |
C B A C D |
C B A . . |
C . . C . |
C B A D |
C |
C The righthand side D is replaced by |
C the solution. A, C are destroyed. |
C-----------------------------------------
C
DO 1 K=2, KK
KM = K-1
C(KM) = C(KM) / A(KM)
D(KM) = D(KM) / A(KM)
A(K) = A(K) - B(K)*C(KM)
D(K) = D(K) - B(K)*D(KM)
1 CONTINUE
C
D(KK) = D(KK)/A(KK)
C
DO 2 K=KK-1, 1, -1
D(K) = D(K) - C(K)*D(K+1)
2 CONTINUE
C
RETURN
END ! TRISOL
FUNCTION SEVAL(SS,X,XS,S,N)
DIMENSION X(N), XS(N), S(N)
C--------------------------------------------------
C Calculates X(SS) |
C XS array must have been calculated by SPLINE |
C--------------------------------------------------
ILOW = 1
I = N
C
10 IF(I-ILOW .LE. 1) GO TO 11
C
IMID = (I+ILOW)/2
IF(SS .LT. S(IMID)) THEN
I = IMID
ELSE
ILOW = IMID
ENDIF
GO TO 10
C
11 DS = S(I) - S(I-1)
T = (SS - S(I-1)) / DS
CX1 = DS*XS(I-1) - X(I) + X(I-1)
CX2 = DS*XS(I) - X(I) + X(I-1)
SEVAL = T*X(I) + (1.0-T)*X(I-1) + (T-T*T)*((1.0-T)*CX1 - T*CX2)
RETURN
END ! SEVAL
FUNCTION DEVAL(SS,X,XS,S,N)
DIMENSION X(N), XS(N), S(N)
C--------------------------------------------------
C Calculates dX/dS(SS) |
C XS array must have been calculated by SPLINE |
C--------------------------------------------------
ILOW = 1
I = N
C
10 IF(I-ILOW .LE. 1) GO TO 11
C
IMID = (I+ILOW)/2
IF(SS .LT. S(IMID)) THEN
I = IMID
ELSE
ILOW = IMID
ENDIF
GO TO 10
C
11 DS = S(I) - S(I-1)
T = (SS - S(I-1)) / DS
CX1 = DS*XS(I-1) - X(I) + X(I-1)
CX2 = DS*XS(I) - X(I) + X(I-1)
DEVAL = X(I) - X(I-1) + (1.-4.0*T+3.0*T*T)*CX1 + T*(3.0*T-2.)*CX2
DEVAL = DEVAL/DS
RETURN
END ! DEVAL
FUNCTION D2VAL(SS,X,XS,S,N)
DIMENSION X(N), XS(N), S(N)
C--------------------------------------------------
C Calculates d2X/dS2(SS) |
C XS array must have been calculated by SPLINE |
C--------------------------------------------------
ILOW = 1
I = N
C
10 IF(I-ILOW .LE. 1) GO TO 11
C
IMID = (I+ILOW)/2
IF(SS .LT. S(IMID)) THEN
I = IMID
ELSE
ILOW = IMID
ENDIF
GO TO 10
C
11 DS = S(I) - S(I-1)
T = (SS - S(I-1)) / DS
CX1 = DS*XS(I-1) - X(I) + X(I-1)
CX2 = DS*XS(I) - X(I) + X(I-1)
D2VAL = (6.*T-4.)*CX1 + (6.*T-2.0)*CX2
D2VAL = D2VAL/DS**2
RETURN
END ! D2VAL
FUNCTION CURV(SS,X,XS,Y,YS,S,N)
DIMENSION X(N), XS(N), Y(N), YS(N), S(N)
C-----------------------------------------------
C Calculates curvature of splined 2-D curve |
C at S = SS |
C |
C S arc length array of curve |
C X, Y coordinate arrays of curve |
C XS,YS derivative arrays |
C (calculated earlier by SPLINE) |
C-----------------------------------------------
C
ILOW = 1
I = N
C
10 IF(I-ILOW .LE. 1) GO TO 11
C
IMID = (I+ILOW)/2
IF(SS .LT. S(IMID)) THEN
I = IMID
ELSE
ILOW = IMID
ENDIF
GO TO 10
C
11 DS = S(I) - S(I-1)
T = (SS - S(I-1)) / DS
C
CX1 = DS*XS(I-1) - X(I) + X(I-1)
CX2 = DS*XS(I) - X(I) + X(I-1)
XD = X(I) - X(I-1) + (1.0-4.0*T+3.0*T*T)*CX1 + T*(3.0*T-2.0)*CX2
XDD = (6.0*T-4.0)*CX1 + (6.0*T-2.0)*CX2
C
CY1 = DS*YS(I-1) - Y(I) + Y(I-1)
CY2 = DS*YS(I) - Y(I) + Y(I-1)
YD = Y(I) - Y(I-1) + (1.0-4.0*T+3.0*T*T)*CY1 + T*(3.0*T-2.0)*CY2
YDD = (6.0*T-4.0)*CY1 + (6.0*T-2.0)*CY2
C
SD = SQRT(XD*XD + YD*YD)
SD = MAX(SD,0.001*DS)
C
CURV = (XD*YDD - YD*XDD) / SD**3
C
RETURN
END ! CURV
FUNCTION CURVS(SS,X,XS,Y,YS,S,N)
DIMENSION X(N), XS(N), Y(N), YS(N), S(N)
C-----------------------------------------------
C Calculates curvature derivative of |
C splined 2-D curve at S = SS |
C |
C S arc length array of curve |
C X, Y coordinate arrays of curve |
C XS,YS derivative arrays |
C (calculated earlier by SPLINE) |
C-----------------------------------------------
C
ILOW = 1
I = N
C
10 IF(I-ILOW .LE. 1) GO TO 11
C
IMID = (I+ILOW)/2
IF(SS .LT. S(IMID)) THEN
I = IMID
ELSE
ILOW = IMID
ENDIF
GO TO 10
C
11 DS = S(I) - S(I-1)
T = (SS - S(I-1)) / DS
C
CX1 = DS*XS(I-1) - X(I) + X(I-1)
CX2 = DS*XS(I) - X(I) + X(I-1)
XD = X(I) - X(I-1) + (1.0-4.0*T+3.0*T*T)*CX1 + T*(3.0*T-2.0)*CX2
XDD = (6.0*T-4.0)*CX1 + (6.0*T-2.0)*CX2
XDDD = 6.0*CX1 + 6.0*CX2
C
CY1 = DS*YS(I-1) - Y(I) + Y(I-1)
CY2 = DS*YS(I) - Y(I) + Y(I-1)
YD = Y(I) - Y(I-1) + (1.0-4.0*T+3.0*T*T)*CY1 + T*(3.0*T-2.0)*CY2
YDD = (6.0*T-4.0)*CY1 + (6.0*T-2.0)*CY2
YDDD = 6.0*CY1 + 6.0*CY2
C
SD = SQRT(XD*XD + YD*YD)
SD = MAX(SD,0.001*DS)
C
BOT = SD**3
DBOTDT = 3.0*SD*(XD*XDD + YD*YDD)
C
TOP = XD*YDD - YD*XDD
DTOPDT = XD*YDDD - YD*XDDD
C
CURVS = (DTOPDT*BOT - DBOTDT*TOP) / BOT**2
C
RETURN
END ! CURVS
SUBROUTINE SINVRT(SI,XI,X,XS,S,N)
DIMENSION X(N), XS(N), S(N)
C-------------------------------------------------------
C Calculates the "inverse" spline function S(X). |
C Since S(X) can be multi-valued or not defined, |
C this is not a "black-box" routine. The calling |
C program must pass via SI a sufficiently good |
C initial guess for S(XI). |
C |
C XI specified X value (input) |
C SI calculated S(XI) value (input,output) |
C X,XS,S usual spline arrays (input) |
C |
C-------------------------------------------------------
C
SISAV = SI
C
DO 10 ITER=1, 10
RES = SEVAL(SI,X,XS,S,N) - XI
RESP = DEVAL(SI,X,XS,S,N)
DS = -RES/RESP
SI = SI + DS
IF(ABS(DS/(S(N)-S(1))) .LT. 1.0E-5) RETURN
10 CONTINUE
WRITE(*,*)
& 'SINVRT: spline inversion failed. Input value returned.'
SI = SISAV
C
RETURN
END ! SINVRT
SUBROUTINE SCALC(X,Y,S,N)
DIMENSION X(N), Y(N), S(N)
C----------------------------------------
C Calculates the arc length array S |
C for a 2-D array of points (X,Y). |
C----------------------------------------
C
S(1) = 0.
DO 10 I=2, N
S(I) = S(I-1) + SQRT((X(I)-X(I-1))**2 + (Y(I)-Y(I-1))**2)
10 CONTINUE
C
RETURN
END ! SCALC
SUBROUTINE SPLNXY(X,XS,Y,YS,S,N)
DIMENSION X(N), XS(N), Y(N), YS(N), S(N)
C-----------------------------------------
C Splines 2-D shape X(S), Y(S), along |
C with true arc length parameter S. |
C-----------------------------------------
PARAMETER (KMAX=32)
DIMENSION XT(0:KMAX), YT(0:KMAX)
C
KK = KMAX
NPASS = 10
C
C---- set first estimate of arc length parameter
CALL SCALC(X,Y,S,N)
C
C---- spline X(S) and Y(S)
CALL SEGSPL(X,XS,S,N)
CALL SEGSPL(Y,YS,S,N)
C
C---- re-integrate true arc length
DO 100 IPASS=1, NPASS
C
SERR = 0.
C
DS = S(2) - S(1)
DO I = 2, N
DX = X(I) - X(I-1)
DY = Y(I) - Y(I-1)
C
CX1 = DS*XS(I-1) - DX
CX2 = DS*XS(I ) - DX
CY1 = DS*YS(I-1) - DY
CY2 = DS*YS(I ) - DY
C
XT(0) = 0.
YT(0) = 0.
DO K=1, KK-1
T = FLOAT(K) / FLOAT(KK)
XT(K) = T*DX + (T-T*T)*((1.0-T)*CX1 - T*CX2)
YT(K) = T*DY + (T-T*T)*((1.0-T)*CY1 - T*CY2)
ENDDO
XT(KK) = DX
YT(KK) = DY
C
SINT1 = 0.
DO K=1, KK
SINT1 = SINT1
& + SQRT((XT(K)-XT(K-1))**2 + (YT(K)-YT(K-1))**2)
ENDDO
C
SINT2 = 0.
DO K=2, KK, 2
SINT2 = SINT2
& + SQRT((XT(K)-XT(K-2))**2 + (YT(K)-YT(K-2))**2)
ENDDO
C
SINT = (4.0*SINT1 - SINT2) / 3.0
C
IF(ABS(SINT-DS) .GT. ABS(SERR)) SERR = SINT - DS
C
IF(I.LT.N) DS = S(I+1) - S(I)
C
S(I) = S(I-1) + SQRT(SINT)
ENDDO
C
SERR = SERR / (S(N) - S(1))
WRITE(*,*) IPASS, SERR
C
C------ re-spline X(S) and Y(S)
CALL SEGSPL(X,XS,S,N)
CALL SEGSPL(Y,YS,S,N)
C
IF(ABS(SERR) .LT. 1.0E-7) RETURN
C
100 CONTINUE
C
RETURN
END ! SPLNXY
SUBROUTINE SEGSPL(X,XS,S,N)
C-----------------------------------------------
C Splines X(S) array just like SPLINE, |
C but allows derivative discontinuities |
C at segment joints. Segment joints are |
C defined by identical successive S values. |
C-----------------------------------------------
DIMENSION X(N), XS(N), S(N)
C
IF(S(1).EQ.S(2) ) STOP 'SEGSPL: First input point duplicated'
IF(S(N).EQ.S(N-1)) STOP 'SEGSPL: Last input point duplicated'
C
ISEG0 = 1
DO 10 ISEG=2, N-2
IF(S(ISEG).EQ.S(ISEG+1)) THEN
NSEG = ISEG - ISEG0 + 1
CALL SPLIND(X(ISEG0),XS(ISEG0),S(ISEG0),NSEG,-999.0,-999.0)
ISEG0 = ISEG+1
ENDIF
10 CONTINUE
C
NSEG = N - ISEG0 + 1
CALL SPLIND(X(ISEG0),XS(ISEG0),S(ISEG0),NSEG,-999.0,-999.0)
C
RETURN
END ! SEGSPL
SUBROUTINE SEGSPLD(X,XS,S,N,XS1,XS2)
C-----------------------------------------------
C Splines X(S) array just like SPLIND, |
C but allows derivative discontinuities |
C at segment joints. Segment joints are |
C defined by identical successive S values. |
C-----------------------------------------------
DIMENSION X(N), XS(N), S(N)
C
IF(S(1).EQ.S(2) ) STOP 'SEGSPL: First input point duplicated'
IF(S(N).EQ.S(N-1)) STOP 'SEGSPL: Last input point duplicated'
C
ISEG0 = 1
DO 10 ISEG=2, N-2
IF(S(ISEG).EQ.S(ISEG+1)) THEN
NSEG = ISEG - ISEG0 + 1
CALL SPLIND(X(ISEG0),XS(ISEG0),S(ISEG0),NSEG,XS1,XS2)
ISEG0 = ISEG+1
ENDIF
10 CONTINUE
C
NSEG = N - ISEG0 + 1
CALL SPLIND(X(ISEG0),XS(ISEG0),S(ISEG0),NSEG,XS1,XS2)
C
RETURN
END ! SEGSPL
|