File: mpmath.h

package info (click to toggle)
xfractint 3.04-1
  • links: PTS
  • area: non-free
  • in suites: hamm
  • size: 3,600 kB
  • ctags: 6,563
  • sloc: ansic: 65,962; makefile: 246; sh: 33
file content (199 lines) | stat: -rw-r--r-- 7,019 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
/*
 *  REMOVED FORMAL PARAMETERS FROM FUNCTION DEFINITIONS (1/4/92)
 */


#ifndef MPMATH_H
#define MPMATH_H

#ifndef _CMPLX_DEFINED
#include "cmplx.h"
#endif

#ifdef XFRACT
#define far
#endif


#ifndef XFRACT
struct MP {
   int Exp;
        unsigned long Mant;
};
#else
struct MP {
   double val;
};
#endif

struct MPC {
        struct MP x, y;
};

extern int MPOverflow;
extern int DivideOverflow;

/* Mark Peterson's expanded floating point operators.  Automatically uses
   either the 8086 or 80386 processor type specified in global 'cpu'. If
   the operation results in an overflow (result < 2**(2**14), or division
   by zero) the global 'MPoverflow' is set to one. */

/* function pointer support added by Tim Wegner 12/07/89 */
extern int         (*pMPcmp)(struct MP , struct MP );
extern struct MP  *(*pMPmul)(struct MP , struct MP );
extern struct MP  *(*pMPdiv)(struct MP , struct MP );
extern struct MP  *(*pMPadd)(struct MP , struct MP );
extern struct MP  *(*pMPsub)(struct MP , struct MP );
extern struct MP  *(*pd2MP)(double )                ;
extern double     *(*pMP2d)(struct MP )             ;


/*** Formula Declarations ***/
enum MATH_TYPE { D_MATH, M_MATH, L_MATH };
extern enum MATH_TYPE MathType;

#define fDiv(x, y, z) (void)((*(long*)&z) = RegDivFloat(*(long*)&x, *(long*)&y))
#define fMul16(x, y, z) (void)((*(long*)&z) = r16Mul(*(long*)&x, *(long*)&y))
#define fShift(x, Shift, z) (void)((*(long*)&z) = \
   RegSftFloat(*(long*)&x, Shift))
#define Fg2Float(x, f, z) (void)((*(long*)&z) = RegFg2Float(x, f))
#define Float2Fg(x, f) RegFloat2Fg(*(long*)&x, f)
#define fLog14(x, z) (void)((*(long*)&z) = \
        RegFg2Float(LogFloat14(*(long*)&x), 16))
#define fExp14(x, z) (void)((*(long*)&z) = ExpFloat14(*(long*)&x));
#define fSqrt14(x, z) fLog14(x, z); fShift(z, -1, z); fExp14(z, z)

/* the following are declared 4 dimensional as an experiment */
/* changeing declarations to _CMPLX and _LCMPLX restores the code */
/* to 2D */
union Arg {
   _CMPLX     d;
   struct MPC m;
   _LCMPLX    l;
/*
   _DHCMPLX   dh;
   _LHCMPLX   lh; */
};

struct ConstArg {
   char *s;
   int len;
   union Arg a;
};

extern union Arg *Arg1,*Arg2;

extern void lStkSin(void),lStkCos(void),lStkSinh(void),lStkCosh(void),lStkLog(void),lStkExp(void),lStkSqr(void);
extern void dStkSin(void),dStkCos(void),dStkSinh(void),dStkCosh(void),dStkLog(void),dStkExp(void),dStkSqr(void);

extern void (*ltrig0)(void);
extern void (*ltrig1)(void);
extern void (*ltrig2)(void);
extern void (*ltrig3)(void);
extern void (*dtrig0)(void);
extern void (*dtrig1)(void);
extern void (*dtrig2)(void);
extern void (*dtrig3)(void);

/* -------------------------------------------------------------------- */
/*   The following #defines allow the complex transcendental functions  */
/*   in parser.c to be used here thus avoiding duplicated code.         */
/* -------------------------------------------------------------------- */
#ifndef XFRACT

#define CMPLXmod(z)       (sqr((z).x)+sqr((z).y))
#define CMPLXconj(z)    ((z).y =  -((z).y))
#define LCMPLXmod(z)       (lsqr((z).x)+lsqr((z).y))
#define LCMPLXconj(z)   ((z).y =  -((z).y))


#define LCMPLXtrig0(arg,out) Arg1->l = (arg); ltrig0(); (out)=Arg1->l
#define LCMPLXtrig1(arg,out) Arg1->l = (arg); ltrig1(); (out)=Arg1->l
#define LCMPLXtrig2(arg,out) Arg1->l = (arg); ltrig2(); (out)=Arg1->l
#define LCMPLXtrig3(arg,out) Arg1->l = (arg); ltrig3(); (out)=Arg1->l

#endif /* XFRACT */

#define  CMPLXtrig0(arg,out) Arg1->d = (arg); dtrig0(); (out)=Arg1->d
#define  CMPLXtrig1(arg,out) Arg1->d = (arg); dtrig1(); (out)=Arg1->d
#define  CMPLXtrig2(arg,out) Arg1->d = (arg); dtrig2(); (out)=Arg1->d
#define  CMPLXtrig3(arg,out) Arg1->d = (arg); dtrig3(); (out)=Arg1->d

#ifndef XFRACT

#define LCMPLXsin(arg,out)   Arg1->l = (arg); lStkSin();  (out) = Arg1->l
#define LCMPLXcos(arg,out)   Arg1->l = (arg); lStkCos();  (out) = Arg1->l
#define LCMPLXsinh(arg,out)  Arg1->l = (arg); lStkSinh(); (out) = Arg1->l
#define LCMPLXcosh(arg,out)  Arg1->l = (arg); lStkCosh(); (out) = Arg1->l
#define LCMPLXlog(arg,out)   Arg1->l = (arg); lStkLog();  (out) = Arg1->l
#define LCMPLXexp(arg,out)   Arg1->l = (arg); lStkExp();  (out) = Arg1->l
/*
#define LCMPLXsqr(arg,out)   Arg1->l = (arg); lStkSqr();  (out) = Arg1->l
*/
#define LCMPLXsqr(arg,out)   \
   (out).x = lsqr((arg).x) - lsqr((arg).y);\
   (out).y = multiply((arg).x, (arg).y, bitshiftless1)
#define LCMPLXsqr_old(out)       \
   (out).y = multiply(lold.x, lold.y, bitshiftless1);\
   (out).x = ltempsqrx - ltempsqry

#define LCMPLXpwr(arg1,arg2,out)    Arg2->l = (arg1); Arg1->l = (arg2);\
         lStkPwr(); Arg1++; Arg2++; (out) = Arg2->l
#define LCMPLXmult(arg1,arg2,out)    Arg2->l = (arg1); Arg1->l = (arg2);\
         lStkMul(); Arg1++; Arg2++; (out) = Arg2->l
#define LCMPLXadd(arg1,arg2,out)    \
    (out).x = (arg1).x + (arg2).x; (out).y = (arg1).y + (arg2).y
#define LCMPLXsub(arg1,arg2,out)    \
    (out).x = (arg1).x - (arg2).x; (out).y = (arg1).y - (arg2).y

#define LCMPLXtimesreal(arg,real,out)   \
    (out).x = multiply((arg).x,(real),bitshift);\
    (out).y = multiply((arg).y,(real),bitshift)

#define LCMPLXrecip(arg,out)    \
{ long denom; denom = lsqr((arg).x) + lsqr((arg).y);\
if(denom==0L) overflow=1; else {(out).x = divide((arg).x,denom,bitshift);\
(out).y = -divide((arg).y,denom,bitshift);}}
#endif /* XFRACT */

#define CMPLXsin(arg,out)    Arg1->d = (arg); dStkSin();  (out) = Arg1->d
#define CMPLXcos(arg,out)    Arg1->d = (arg); dStkCos();  (out) = Arg1->d
#define CMPLXsinh(arg,out)   Arg1->d = (arg); dStkSinh(); (out) = Arg1->d
#define CMPLXcosh(arg,out)   Arg1->d = (arg); dStkCosh(); (out) = Arg1->d
#define CMPLXlog(arg,out)    Arg1->d = (arg); dStkLog();  (out) = Arg1->d
#define CMPLXexp(arg,out)    FPUcplxexp(&(arg), &(out))
/*
#define CMPLXsqr(arg,out)    Arg1->d = (arg); dStkSqr();  (out) = Arg1->d
*/
#define CMPLXsqr(arg,out)    \
   (out).x = sqr((arg).x) - sqr((arg).y);\
   (out).y = ((arg).x+(arg).x) * (arg).y
#define CMPLXsqr_old(out)       \
   (out).y = (old.x+old.x) * old.y;\
   (out).x = tempsqrx - tempsqry

#define CMPLXpwr(arg1,arg2,out)   (out)= ComplexPower((arg1), (arg2))
#define CMPLXmult1(arg1,arg2,out)    Arg2->d = (arg1); Arg1->d = (arg2);\
         dStkMul(); Arg1++; Arg2++; (out) = Arg2->d
#define CMPLXmult(arg1,arg2,out)  \
        {\
           _CMPLX TmP;\
           TmP.x = (arg1).x*(arg2).x - (arg1).y*(arg2).y;\
           TmP.y = (arg1).x*(arg2).y + (arg1).y*(arg2).x;\
           (out) = TmP;\
         }
#define CMPLXadd(arg1,arg2,out)    \
    (out).x = (arg1).x + (arg2).x; (out).y = (arg1).y + (arg2).y
#define CMPLXsub(arg1,arg2,out)    \
    (out).x = (arg1).x - (arg2).x; (out).y = (arg1).y - (arg2).y
#define CMPLXtimesreal(arg,real,out)   \
    (out).x = (arg).x*(real);\
    (out).y = (arg).y*(real)

#define CMPLXrecip(arg,out)    \
   { double denom; denom = sqr((arg).x) + sqr((arg).y);\
     if(denom==0.0) {(out).x = 1.0e10;(out).y = 1.0e10;}else\
    { (out).x =  (arg).x/denom;\
     (out).y = -(arg).y/denom;}}

#endif