1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2017 Oracle. All Rights Reserved.
* Author: Darrick J. Wong <darrick.wong@oracle.com>
*/
#include <pthread.h>
#include <signal.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <stdbool.h>
#include <errno.h>
#include <assert.h>
#include <urcu.h>
#include "workqueue.h"
/* Main processing thread */
static void *
workqueue_thread(void *arg)
{
struct workqueue *wq = arg;
struct workqueue_item *wi;
/*
* Loop pulling work from the passed in work queue.
* Check for notification to exit after every chunk of work.
*/
rcu_register_thread();
pthread_mutex_lock(&wq->lock);
while (1) {
/*
* Wait for work.
*/
while (wq->next_item == NULL && !wq->terminate) {
assert(wq->item_count == 0);
pthread_cond_wait(&wq->wakeup, &wq->lock);
}
if (wq->next_item == NULL && wq->terminate)
break;
/*
* Dequeue work from the head of the list. If the queue was
* full then send a wakeup if we're configured to do so.
*/
assert(wq->item_count > 0);
if (wq->max_queued)
pthread_cond_broadcast(&wq->queue_full);
wi = wq->next_item;
wq->next_item = wi->next;
wq->item_count--;
if (wq->max_queued && wq->next_item) {
/* more work, wake up another worker */
pthread_cond_signal(&wq->wakeup);
}
wq->active_threads++;
pthread_mutex_unlock(&wq->lock);
(wi->function)(wi->queue, wi->index, wi->arg);
free(wi);
pthread_mutex_lock(&wq->lock);
wq->active_threads--;
}
pthread_mutex_unlock(&wq->lock);
rcu_unregister_thread();
return NULL;
}
/* Allocate a work queue and threads. Returns zero or negative error code. */
int
workqueue_create_bound(
struct workqueue *wq,
void *wq_ctx,
unsigned int nr_workers,
unsigned int max_queue)
{
unsigned int i;
int err = 0;
memset(wq, 0, sizeof(*wq));
err = -pthread_cond_init(&wq->wakeup, NULL);
if (err)
return err;
err = -pthread_cond_init(&wq->queue_full, NULL);
if (err)
goto out_wake;
err = -pthread_mutex_init(&wq->lock, NULL);
if (err)
goto out_cond;
wq->wq_ctx = wq_ctx;
wq->thread_count = nr_workers;
wq->max_queued = max_queue;
wq->threads = malloc(nr_workers * sizeof(pthread_t));
if (!wq->threads) {
err = -errno;
goto out_mutex;
}
wq->terminate = false;
wq->terminated = false;
for (i = 0; i < nr_workers; i++) {
err = -pthread_create(&wq->threads[i], NULL, workqueue_thread,
wq);
if (err)
break;
}
/*
* If we encounter errors here, we have to signal and then wait for all
* the threads that may have been started running before we can destroy
* the workqueue.
*/
if (err)
workqueue_destroy(wq);
return err;
out_mutex:
pthread_mutex_destroy(&wq->lock);
out_cond:
pthread_cond_destroy(&wq->queue_full);
out_wake:
pthread_cond_destroy(&wq->wakeup);
return err;
}
int
workqueue_create(
struct workqueue *wq,
void *wq_ctx,
unsigned int nr_workers)
{
return workqueue_create_bound(wq, wq_ctx, nr_workers, 0);
}
/*
* Create a work item consisting of a function and some arguments and schedule
* the work item to be run via the thread pool. Returns zero or a negative
* error code.
*/
int
workqueue_add(
struct workqueue *wq,
workqueue_func_t func,
uint32_t index,
void *arg)
{
struct workqueue_item *wi;
int ret;
assert(!wq->terminated);
if (wq->thread_count == 0) {
func(wq, index, arg);
return 0;
}
wi = malloc(sizeof(struct workqueue_item));
if (!wi)
return -errno;
wi->function = func;
wi->index = index;
wi->arg = arg;
wi->queue = wq;
wi->next = NULL;
/* Now queue the new work structure to the work queue. */
pthread_mutex_lock(&wq->lock);
restart:
if (wq->next_item == NULL) {
assert(wq->item_count == 0);
wq->next_item = wi;
} else {
/* throttle on a full queue if configured */
if (wq->max_queued && wq->item_count == wq->max_queued) {
pthread_cond_wait(&wq->queue_full, &wq->lock);
/*
* Queue might be empty or even still full by the time
* we get the lock back, so restart the lookup so we do
* the right thing with the current state of the queue.
*/
goto restart;
}
wq->last_item->next = wi;
}
wq->last_item = wi;
wq->item_count++;
if (wq->active_threads == wq->thread_count - 1) {
/* One thread is idle, wake it */
ret = -pthread_cond_signal(&wq->wakeup);
if (ret) {
pthread_mutex_unlock(&wq->lock);
return ret;
}
} else if (wq->active_threads < wq->thread_count) {
/* Multiple threads are idle, wake everyone */
ret = -pthread_cond_broadcast(&wq->wakeup);
if (ret) {
pthread_mutex_unlock(&wq->lock);
return ret;
}
}
pthread_mutex_unlock(&wq->lock);
return 0;
}
/*
* Wait for all pending work items to be processed and tear down the
* workqueue thread pool. Returns zero or a negative error code.
*/
int
workqueue_terminate(
struct workqueue *wq)
{
unsigned int i;
int ret;
pthread_mutex_lock(&wq->lock);
wq->terminate = true;
pthread_mutex_unlock(&wq->lock);
ret = -pthread_cond_broadcast(&wq->wakeup);
if (ret)
return ret;
for (i = 0; i < wq->thread_count; i++) {
ret = -pthread_join(wq->threads[i], NULL);
if (ret)
return ret;
}
pthread_mutex_lock(&wq->lock);
wq->terminated = true;
pthread_mutex_unlock(&wq->lock);
return 0;
}
/* Tear down the workqueue. */
void
workqueue_destroy(
struct workqueue *wq)
{
assert(wq->terminated);
free(wq->threads);
pthread_mutex_destroy(&wq->lock);
pthread_cond_destroy(&wq->wakeup);
pthread_cond_destroy(&wq->queue_full);
memset(wq, 0, sizeof(*wq));
}
|