1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (c) 2021-2024 Oracle. All Rights Reserved.
* Author: Darrick J. Wong <djwong@kernel.org>
*/
#include "libxfs_priv.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_bit.h"
#include "xfs_sb.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_alloc.h"
#include "xfs_btree.h"
#include "xfs_btree_staging.h"
#include "xfs_rtrefcount_btree.h"
#include "xfs_refcount.h"
#include "xfs_trace.h"
#include "xfs_cksum.h"
#include "xfs_rtgroup.h"
#include "xfs_rtbitmap.h"
#include "xfs_metafile.h"
#include "xfs_health.h"
static struct kmem_cache *xfs_rtrefcountbt_cur_cache;
/*
* Realtime Reference Count btree.
*
* This is a btree used to track the owner(s) of a given extent in the realtime
* device. See the comments in xfs_refcount_btree.c for more information.
*
* This tree is basically the same as the regular refcount btree except that
* it's rooted in an inode.
*/
static struct xfs_btree_cur *
xfs_rtrefcountbt_dup_cursor(
struct xfs_btree_cur *cur)
{
return xfs_rtrefcountbt_init_cursor(cur->bc_tp, to_rtg(cur->bc_group));
}
STATIC int
xfs_rtrefcountbt_get_minrecs(
struct xfs_btree_cur *cur,
int level)
{
if (level == cur->bc_nlevels - 1) {
struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur);
return xfs_rtrefcountbt_maxrecs(cur->bc_mp, ifp->if_broot_bytes,
level == 0) / 2;
}
return cur->bc_mp->m_rtrefc_mnr[level != 0];
}
STATIC int
xfs_rtrefcountbt_get_maxrecs(
struct xfs_btree_cur *cur,
int level)
{
if (level == cur->bc_nlevels - 1) {
struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur);
return xfs_rtrefcountbt_maxrecs(cur->bc_mp, ifp->if_broot_bytes,
level == 0);
}
return cur->bc_mp->m_rtrefc_mxr[level != 0];
}
/*
* Calculate number of records in a realtime refcount btree inode root.
*/
unsigned int
xfs_rtrefcountbt_droot_maxrecs(
unsigned int blocklen,
bool leaf)
{
blocklen -= sizeof(struct xfs_rtrefcount_root);
if (leaf)
return blocklen / sizeof(struct xfs_refcount_rec);
return blocklen / (2 * sizeof(struct xfs_refcount_key) +
sizeof(xfs_rtrefcount_ptr_t));
}
/*
* Get the maximum records we could store in the on-disk format.
*
* For non-root nodes this is equivalent to xfs_rtrefcountbt_get_maxrecs, but
* for the root node this checks the available space in the dinode fork so that
* we can resize the in-memory buffer to match it. After a resize to the
* maximum size this function returns the same value as
* xfs_rtrefcountbt_get_maxrecs for the root node, too.
*/
STATIC int
xfs_rtrefcountbt_get_dmaxrecs(
struct xfs_btree_cur *cur,
int level)
{
if (level != cur->bc_nlevels - 1)
return cur->bc_mp->m_rtrefc_mxr[level != 0];
return xfs_rtrefcountbt_droot_maxrecs(cur->bc_ino.forksize, level == 0);
}
STATIC void
xfs_rtrefcountbt_init_key_from_rec(
union xfs_btree_key *key,
const union xfs_btree_rec *rec)
{
key->refc.rc_startblock = rec->refc.rc_startblock;
}
STATIC void
xfs_rtrefcountbt_init_high_key_from_rec(
union xfs_btree_key *key,
const union xfs_btree_rec *rec)
{
__u32 x;
x = be32_to_cpu(rec->refc.rc_startblock);
x += be32_to_cpu(rec->refc.rc_blockcount) - 1;
key->refc.rc_startblock = cpu_to_be32(x);
}
STATIC void
xfs_rtrefcountbt_init_rec_from_cur(
struct xfs_btree_cur *cur,
union xfs_btree_rec *rec)
{
const struct xfs_refcount_irec *irec = &cur->bc_rec.rc;
uint32_t start;
start = xfs_refcount_encode_startblock(irec->rc_startblock,
irec->rc_domain);
rec->refc.rc_startblock = cpu_to_be32(start);
rec->refc.rc_blockcount = cpu_to_be32(cur->bc_rec.rc.rc_blockcount);
rec->refc.rc_refcount = cpu_to_be32(cur->bc_rec.rc.rc_refcount);
}
STATIC void
xfs_rtrefcountbt_init_ptr_from_cur(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *ptr)
{
ptr->l = 0;
}
STATIC int
xfs_rtrefcountbt_cmp_key_with_cur(
struct xfs_btree_cur *cur,
const union xfs_btree_key *key)
{
const struct xfs_refcount_key *kp = &key->refc;
const struct xfs_refcount_irec *irec = &cur->bc_rec.rc;
uint32_t start;
start = xfs_refcount_encode_startblock(irec->rc_startblock,
irec->rc_domain);
return cmp_int(be32_to_cpu(kp->rc_startblock), start);
}
STATIC int
xfs_rtrefcountbt_cmp_two_keys(
struct xfs_btree_cur *cur,
const union xfs_btree_key *k1,
const union xfs_btree_key *k2,
const union xfs_btree_key *mask)
{
ASSERT(!mask || mask->refc.rc_startblock);
return cmp_int(be32_to_cpu(k1->refc.rc_startblock),
be32_to_cpu(k2->refc.rc_startblock));
}
static xfs_failaddr_t
xfs_rtrefcountbt_verify(
struct xfs_buf *bp)
{
struct xfs_mount *mp = bp->b_target->bt_mount;
struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
xfs_failaddr_t fa;
int level;
if (!xfs_verify_magic(bp, block->bb_magic))
return __this_address;
if (!xfs_has_reflink(mp))
return __this_address;
fa = xfs_btree_fsblock_v5hdr_verify(bp, XFS_RMAP_OWN_UNKNOWN);
if (fa)
return fa;
level = be16_to_cpu(block->bb_level);
if (level > mp->m_rtrefc_maxlevels)
return __this_address;
return xfs_btree_fsblock_verify(bp, mp->m_rtrefc_mxr[level != 0]);
}
static void
xfs_rtrefcountbt_read_verify(
struct xfs_buf *bp)
{
xfs_failaddr_t fa;
if (!xfs_btree_fsblock_verify_crc(bp))
xfs_verifier_error(bp, -EFSBADCRC, __this_address);
else {
fa = xfs_rtrefcountbt_verify(bp);
if (fa)
xfs_verifier_error(bp, -EFSCORRUPTED, fa);
}
if (bp->b_error)
trace_xfs_btree_corrupt(bp, _RET_IP_);
}
static void
xfs_rtrefcountbt_write_verify(
struct xfs_buf *bp)
{
xfs_failaddr_t fa;
fa = xfs_rtrefcountbt_verify(bp);
if (fa) {
trace_xfs_btree_corrupt(bp, _RET_IP_);
xfs_verifier_error(bp, -EFSCORRUPTED, fa);
return;
}
xfs_btree_fsblock_calc_crc(bp);
}
const struct xfs_buf_ops xfs_rtrefcountbt_buf_ops = {
.name = "xfs_rtrefcountbt",
.magic = { 0, cpu_to_be32(XFS_RTREFC_CRC_MAGIC) },
.verify_read = xfs_rtrefcountbt_read_verify,
.verify_write = xfs_rtrefcountbt_write_verify,
.verify_struct = xfs_rtrefcountbt_verify,
};
STATIC int
xfs_rtrefcountbt_keys_inorder(
struct xfs_btree_cur *cur,
const union xfs_btree_key *k1,
const union xfs_btree_key *k2)
{
return be32_to_cpu(k1->refc.rc_startblock) <
be32_to_cpu(k2->refc.rc_startblock);
}
STATIC int
xfs_rtrefcountbt_recs_inorder(
struct xfs_btree_cur *cur,
const union xfs_btree_rec *r1,
const union xfs_btree_rec *r2)
{
return be32_to_cpu(r1->refc.rc_startblock) +
be32_to_cpu(r1->refc.rc_blockcount) <=
be32_to_cpu(r2->refc.rc_startblock);
}
STATIC enum xbtree_key_contig
xfs_rtrefcountbt_keys_contiguous(
struct xfs_btree_cur *cur,
const union xfs_btree_key *key1,
const union xfs_btree_key *key2,
const union xfs_btree_key *mask)
{
ASSERT(!mask || mask->refc.rc_startblock);
return xbtree_key_contig(be32_to_cpu(key1->refc.rc_startblock),
be32_to_cpu(key2->refc.rc_startblock));
}
static inline void
xfs_rtrefcountbt_move_ptrs(
struct xfs_mount *mp,
struct xfs_btree_block *broot,
short old_size,
size_t new_size,
unsigned int numrecs)
{
void *dptr;
void *sptr;
sptr = xfs_rtrefcount_broot_ptr_addr(mp, broot, 1, old_size);
dptr = xfs_rtrefcount_broot_ptr_addr(mp, broot, 1, new_size);
memmove(dptr, sptr, numrecs * sizeof(xfs_rtrefcount_ptr_t));
}
static struct xfs_btree_block *
xfs_rtrefcountbt_broot_realloc(
struct xfs_btree_cur *cur,
unsigned int new_numrecs)
{
struct xfs_mount *mp = cur->bc_mp;
struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur);
struct xfs_btree_block *broot;
unsigned int new_size;
unsigned int old_size = ifp->if_broot_bytes;
const unsigned int level = cur->bc_nlevels - 1;
new_size = xfs_rtrefcount_broot_space_calc(mp, level, new_numrecs);
/* Handle the nop case quietly. */
if (new_size == old_size)
return ifp->if_broot;
if (new_size > old_size) {
unsigned int old_numrecs;
/*
* If there wasn't any memory allocated before, just allocate
* it now and get out.
*/
if (old_size == 0)
return xfs_broot_realloc(ifp, new_size);
/*
* If there is already an existing if_broot, then we need to
* realloc it and possibly move the node block pointers because
* those are not butted up against the btree block header.
*/
old_numrecs = xfs_rtrefcountbt_maxrecs(mp, old_size, level);
broot = xfs_broot_realloc(ifp, new_size);
if (level > 0)
xfs_rtrefcountbt_move_ptrs(mp, broot, old_size,
new_size, old_numrecs);
goto out_broot;
}
/*
* We're reducing numrecs. If we're going all the way to zero, just
* free the block.
*/
ASSERT(ifp->if_broot != NULL && old_size > 0);
if (new_size == 0)
return xfs_broot_realloc(ifp, 0);
/*
* Shrink the btree root by possibly moving the rtrmapbt pointers,
* since they are not butted up against the btree block header. Then
* reallocate broot.
*/
if (level > 0)
xfs_rtrefcountbt_move_ptrs(mp, ifp->if_broot, old_size,
new_size, new_numrecs);
broot = xfs_broot_realloc(ifp, new_size);
out_broot:
ASSERT(xfs_rtrefcount_droot_space(broot) <=
xfs_inode_fork_size(cur->bc_ino.ip, cur->bc_ino.whichfork));
return broot;
}
const struct xfs_btree_ops xfs_rtrefcountbt_ops = {
.name = "rtrefcount",
.type = XFS_BTREE_TYPE_INODE,
.geom_flags = XFS_BTGEO_IROOT_RECORDS,
.rec_len = sizeof(struct xfs_refcount_rec),
.key_len = sizeof(struct xfs_refcount_key),
.ptr_len = XFS_BTREE_LONG_PTR_LEN,
.lru_refs = XFS_REFC_BTREE_REF,
.statoff = XFS_STATS_CALC_INDEX(xs_rtrefcbt_2),
.sick_mask = XFS_SICK_RG_REFCNTBT,
.dup_cursor = xfs_rtrefcountbt_dup_cursor,
.alloc_block = xfs_btree_alloc_metafile_block,
.free_block = xfs_btree_free_metafile_block,
.get_minrecs = xfs_rtrefcountbt_get_minrecs,
.get_maxrecs = xfs_rtrefcountbt_get_maxrecs,
.get_dmaxrecs = xfs_rtrefcountbt_get_dmaxrecs,
.init_key_from_rec = xfs_rtrefcountbt_init_key_from_rec,
.init_high_key_from_rec = xfs_rtrefcountbt_init_high_key_from_rec,
.init_rec_from_cur = xfs_rtrefcountbt_init_rec_from_cur,
.init_ptr_from_cur = xfs_rtrefcountbt_init_ptr_from_cur,
.cmp_key_with_cur = xfs_rtrefcountbt_cmp_key_with_cur,
.buf_ops = &xfs_rtrefcountbt_buf_ops,
.cmp_two_keys = xfs_rtrefcountbt_cmp_two_keys,
.keys_inorder = xfs_rtrefcountbt_keys_inorder,
.recs_inorder = xfs_rtrefcountbt_recs_inorder,
.keys_contiguous = xfs_rtrefcountbt_keys_contiguous,
.broot_realloc = xfs_rtrefcountbt_broot_realloc,
};
/* Allocate a new rt refcount btree cursor. */
struct xfs_btree_cur *
xfs_rtrefcountbt_init_cursor(
struct xfs_trans *tp,
struct xfs_rtgroup *rtg)
{
struct xfs_inode *ip = rtg_refcount(rtg);
struct xfs_mount *mp = rtg_mount(rtg);
struct xfs_btree_cur *cur;
xfs_assert_ilocked(ip, XFS_ILOCK_SHARED | XFS_ILOCK_EXCL);
cur = xfs_btree_alloc_cursor(mp, tp, &xfs_rtrefcountbt_ops,
mp->m_rtrefc_maxlevels, xfs_rtrefcountbt_cur_cache);
cur->bc_ino.ip = ip;
cur->bc_refc.nr_ops = 0;
cur->bc_refc.shape_changes = 0;
cur->bc_group = xfs_group_hold(rtg_group(rtg));
cur->bc_nlevels = be16_to_cpu(ip->i_df.if_broot->bb_level) + 1;
cur->bc_ino.forksize = xfs_inode_fork_size(ip, XFS_DATA_FORK);
cur->bc_ino.whichfork = XFS_DATA_FORK;
return cur;
}
/*
* Install a new rt reverse mapping btree root. Caller is responsible for
* invalidating and freeing the old btree blocks.
*/
void
xfs_rtrefcountbt_commit_staged_btree(
struct xfs_btree_cur *cur,
struct xfs_trans *tp)
{
struct xbtree_ifakeroot *ifake = cur->bc_ino.ifake;
struct xfs_ifork *ifp;
int flags = XFS_ILOG_CORE | XFS_ILOG_DBROOT;
ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
ASSERT(ifake->if_fork->if_format == XFS_DINODE_FMT_META_BTREE);
/*
* Free any resources hanging off the real fork, then shallow-copy the
* staging fork's contents into the real fork to transfer everything
* we just built.
*/
ifp = xfs_ifork_ptr(cur->bc_ino.ip, XFS_DATA_FORK);
xfs_idestroy_fork(ifp);
memcpy(ifp, ifake->if_fork, sizeof(struct xfs_ifork));
cur->bc_ino.ip->i_projid = cur->bc_group->xg_gno;
xfs_trans_log_inode(tp, cur->bc_ino.ip, flags);
xfs_btree_commit_ifakeroot(cur, tp, XFS_DATA_FORK);
}
/* Calculate number of records in a realtime refcount btree block. */
static inline unsigned int
xfs_rtrefcountbt_block_maxrecs(
unsigned int blocklen,
bool leaf)
{
if (leaf)
return blocklen / sizeof(struct xfs_refcount_rec);
return blocklen / (sizeof(struct xfs_refcount_key) +
sizeof(xfs_rtrefcount_ptr_t));
}
/*
* Calculate number of records in an refcount btree block.
*/
unsigned int
xfs_rtrefcountbt_maxrecs(
struct xfs_mount *mp,
unsigned int blocklen,
bool leaf)
{
blocklen -= XFS_RTREFCOUNT_BLOCK_LEN;
return xfs_rtrefcountbt_block_maxrecs(blocklen, leaf);
}
/* Compute the max possible height for realtime refcount btrees. */
unsigned int
xfs_rtrefcountbt_maxlevels_ondisk(void)
{
unsigned int minrecs[2];
unsigned int blocklen;
blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_LBLOCK_CRC_LEN;
minrecs[0] = xfs_rtrefcountbt_block_maxrecs(blocklen, true) / 2;
minrecs[1] = xfs_rtrefcountbt_block_maxrecs(blocklen, false) / 2;
/* We need at most one record for every block in an rt group. */
return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_RGBLOCKS);
}
int __init
xfs_rtrefcountbt_init_cur_cache(void)
{
xfs_rtrefcountbt_cur_cache = kmem_cache_create("xfs_rtrefcountbt_cur",
xfs_btree_cur_sizeof(
xfs_rtrefcountbt_maxlevels_ondisk()),
0, 0, NULL);
if (!xfs_rtrefcountbt_cur_cache)
return -ENOMEM;
return 0;
}
void
xfs_rtrefcountbt_destroy_cur_cache(void)
{
kmem_cache_destroy(xfs_rtrefcountbt_cur_cache);
xfs_rtrefcountbt_cur_cache = NULL;
}
/* Compute the maximum height of a realtime refcount btree. */
void
xfs_rtrefcountbt_compute_maxlevels(
struct xfs_mount *mp)
{
unsigned int d_maxlevels, r_maxlevels;
if (!xfs_has_rtreflink(mp)) {
mp->m_rtrefc_maxlevels = 0;
return;
}
/*
* The realtime refcountbt lives on the data device, which means that
* its maximum height is constrained by the size of the data device and
* the height required to store one refcount record for each rtextent
* in an rt group.
*/
d_maxlevels = xfs_btree_space_to_height(mp->m_rtrefc_mnr,
mp->m_sb.sb_dblocks);
r_maxlevels = xfs_btree_compute_maxlevels(mp->m_rtrefc_mnr,
mp->m_sb.sb_rgextents);
/* Add one level to handle the inode root level. */
mp->m_rtrefc_maxlevels = min(d_maxlevels, r_maxlevels) + 1;
}
/* Calculate the rtrefcount btree size for some records. */
unsigned long long
xfs_rtrefcountbt_calc_size(
struct xfs_mount *mp,
unsigned long long len)
{
return xfs_btree_calc_size(mp->m_rtrefc_mnr, len);
}
/*
* Calculate the maximum refcount btree size.
*/
static unsigned long long
xfs_rtrefcountbt_max_size(
struct xfs_mount *mp,
xfs_rtblock_t rtblocks)
{
/* Bail out if we're uninitialized, which can happen in mkfs. */
if (mp->m_rtrefc_mxr[0] == 0)
return 0;
return xfs_rtrefcountbt_calc_size(mp, rtblocks);
}
/*
* Figure out how many blocks to reserve and how many are used by this btree.
* We need enough space to hold one record for every rt extent in the rtgroup.
*/
xfs_filblks_t
xfs_rtrefcountbt_calc_reserves(
struct xfs_mount *mp)
{
if (!xfs_has_rtreflink(mp))
return 0;
return xfs_rtrefcountbt_max_size(mp, mp->m_sb.sb_rgextents);
}
/*
* Convert on-disk form of btree root to in-memory form.
*/
STATIC void
xfs_rtrefcountbt_from_disk(
struct xfs_inode *ip,
struct xfs_rtrefcount_root *dblock,
int dblocklen,
struct xfs_btree_block *rblock)
{
struct xfs_mount *mp = ip->i_mount;
struct xfs_refcount_key *fkp;
__be64 *fpp;
struct xfs_refcount_key *tkp;
__be64 *tpp;
struct xfs_refcount_rec *frp;
struct xfs_refcount_rec *trp;
unsigned int numrecs;
unsigned int maxrecs;
unsigned int rblocklen;
rblocklen = xfs_rtrefcount_broot_space(mp, dblock);
xfs_btree_init_block(mp, rblock, &xfs_rtrefcountbt_ops, 0, 0,
ip->i_ino);
rblock->bb_level = dblock->bb_level;
rblock->bb_numrecs = dblock->bb_numrecs;
if (be16_to_cpu(rblock->bb_level) > 0) {
maxrecs = xfs_rtrefcountbt_droot_maxrecs(dblocklen, false);
fkp = xfs_rtrefcount_droot_key_addr(dblock, 1);
tkp = xfs_rtrefcount_key_addr(rblock, 1);
fpp = xfs_rtrefcount_droot_ptr_addr(dblock, 1, maxrecs);
tpp = xfs_rtrefcount_broot_ptr_addr(mp, rblock, 1, rblocklen);
numrecs = be16_to_cpu(dblock->bb_numrecs);
memcpy(tkp, fkp, 2 * sizeof(*fkp) * numrecs);
memcpy(tpp, fpp, sizeof(*fpp) * numrecs);
} else {
frp = xfs_rtrefcount_droot_rec_addr(dblock, 1);
trp = xfs_rtrefcount_rec_addr(rblock, 1);
numrecs = be16_to_cpu(dblock->bb_numrecs);
memcpy(trp, frp, sizeof(*frp) * numrecs);
}
}
/* Load a realtime reference count btree root in from disk. */
int
xfs_iformat_rtrefcount(
struct xfs_inode *ip,
struct xfs_dinode *dip)
{
struct xfs_mount *mp = ip->i_mount;
struct xfs_rtrefcount_root *dfp = XFS_DFORK_PTR(dip, XFS_DATA_FORK);
struct xfs_btree_block *broot;
unsigned int numrecs;
unsigned int level;
int dsize;
/*
* growfs must create the rtrefcount inodes before adding a realtime
* volume to the filesystem, so we cannot use the rtrefcount predicate
* here.
*/
if (!xfs_has_reflink(ip->i_mount)) {
xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
return -EFSCORRUPTED;
}
dsize = XFS_DFORK_SIZE(dip, mp, XFS_DATA_FORK);
numrecs = be16_to_cpu(dfp->bb_numrecs);
level = be16_to_cpu(dfp->bb_level);
if (level > mp->m_rtrefc_maxlevels ||
xfs_rtrefcount_droot_space_calc(level, numrecs) > dsize) {
xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
return -EFSCORRUPTED;
}
broot = xfs_broot_alloc(xfs_ifork_ptr(ip, XFS_DATA_FORK),
xfs_rtrefcount_broot_space_calc(mp, level, numrecs));
if (broot)
xfs_rtrefcountbt_from_disk(ip, dfp, dsize, broot);
return 0;
}
/*
* Convert in-memory form of btree root to on-disk form.
*/
void
xfs_rtrefcountbt_to_disk(
struct xfs_mount *mp,
struct xfs_btree_block *rblock,
int rblocklen,
struct xfs_rtrefcount_root *dblock,
int dblocklen)
{
struct xfs_refcount_key *fkp;
__be64 *fpp;
struct xfs_refcount_key *tkp;
__be64 *tpp;
struct xfs_refcount_rec *frp;
struct xfs_refcount_rec *trp;
unsigned int maxrecs;
unsigned int numrecs;
ASSERT(rblock->bb_magic == cpu_to_be32(XFS_RTREFC_CRC_MAGIC));
ASSERT(uuid_equal(&rblock->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid));
ASSERT(rblock->bb_u.l.bb_blkno == cpu_to_be64(XFS_BUF_DADDR_NULL));
ASSERT(rblock->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK));
ASSERT(rblock->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK));
dblock->bb_level = rblock->bb_level;
dblock->bb_numrecs = rblock->bb_numrecs;
if (be16_to_cpu(rblock->bb_level) > 0) {
maxrecs = xfs_rtrefcountbt_droot_maxrecs(dblocklen, false);
fkp = xfs_rtrefcount_key_addr(rblock, 1);
tkp = xfs_rtrefcount_droot_key_addr(dblock, 1);
fpp = xfs_rtrefcount_broot_ptr_addr(mp, rblock, 1, rblocklen);
tpp = xfs_rtrefcount_droot_ptr_addr(dblock, 1, maxrecs);
numrecs = be16_to_cpu(rblock->bb_numrecs);
memcpy(tkp, fkp, 2 * sizeof(*fkp) * numrecs);
memcpy(tpp, fpp, sizeof(*fpp) * numrecs);
} else {
frp = xfs_rtrefcount_rec_addr(rblock, 1);
trp = xfs_rtrefcount_droot_rec_addr(dblock, 1);
numrecs = be16_to_cpu(rblock->bb_numrecs);
memcpy(trp, frp, sizeof(*frp) * numrecs);
}
}
/* Flush a realtime reference count btree root out to disk. */
void
xfs_iflush_rtrefcount(
struct xfs_inode *ip,
struct xfs_dinode *dip)
{
struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
struct xfs_rtrefcount_root *dfp = XFS_DFORK_PTR(dip, XFS_DATA_FORK);
ASSERT(ifp->if_broot != NULL);
ASSERT(ifp->if_broot_bytes > 0);
ASSERT(xfs_rtrefcount_droot_space(ifp->if_broot) <=
xfs_inode_fork_size(ip, XFS_DATA_FORK));
xfs_rtrefcountbt_to_disk(ip->i_mount, ifp->if_broot,
ifp->if_broot_bytes, dfp,
XFS_DFORK_SIZE(dip, ip->i_mount, XFS_DATA_FORK));
}
/*
* Create a realtime refcount btree inode.
*/
int
xfs_rtrefcountbt_create(
struct xfs_rtgroup *rtg,
struct xfs_inode *ip,
struct xfs_trans *tp,
bool init)
{
struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
struct xfs_mount *mp = ip->i_mount;
struct xfs_btree_block *broot;
ifp->if_format = XFS_DINODE_FMT_META_BTREE;
ASSERT(ifp->if_broot_bytes == 0);
ASSERT(ifp->if_bytes == 0);
/* Initialize the empty incore btree root. */
broot = xfs_broot_realloc(ifp,
xfs_rtrefcount_broot_space_calc(mp, 0, 0));
if (broot)
xfs_btree_init_block(mp, broot, &xfs_rtrefcountbt_ops, 0, 0,
ip->i_ino);
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE | XFS_ILOG_DBROOT);
return 0;
}
|