1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (c) 2018-2024 Oracle. All Rights Reserved.
* Author: Darrick J. Wong <djwong@kernel.org>
*/
#include "libxfs_priv.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_bit.h"
#include "xfs_sb.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_alloc.h"
#include "xfs_btree.h"
#include "xfs_btree_staging.h"
#include "xfs_metafile.h"
#include "xfs_rmap.h"
#include "xfs_rtrmap_btree.h"
#include "xfs_trace.h"
#include "xfs_cksum.h"
#include "xfs_rtgroup.h"
#include "xfs_bmap.h"
#include "xfs_health.h"
#include "xfile.h"
#include "buf_mem.h"
#include "xfs_btree_mem.h"
static struct kmem_cache *xfs_rtrmapbt_cur_cache;
/*
* Realtime Reverse Map btree.
*
* This is a btree used to track the owner(s) of a given extent in the realtime
* device. See the comments in xfs_rmap_btree.c for more information.
*
* This tree is basically the same as the regular rmap btree except that it
* is rooted in an inode and does not live in free space.
*/
static struct xfs_btree_cur *
xfs_rtrmapbt_dup_cursor(
struct xfs_btree_cur *cur)
{
return xfs_rtrmapbt_init_cursor(cur->bc_tp, to_rtg(cur->bc_group));
}
STATIC int
xfs_rtrmapbt_get_minrecs(
struct xfs_btree_cur *cur,
int level)
{
if (level == cur->bc_nlevels - 1) {
struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur);
return xfs_rtrmapbt_maxrecs(cur->bc_mp, ifp->if_broot_bytes,
level == 0) / 2;
}
return cur->bc_mp->m_rtrmap_mnr[level != 0];
}
STATIC int
xfs_rtrmapbt_get_maxrecs(
struct xfs_btree_cur *cur,
int level)
{
if (level == cur->bc_nlevels - 1) {
struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur);
return xfs_rtrmapbt_maxrecs(cur->bc_mp, ifp->if_broot_bytes,
level == 0);
}
return cur->bc_mp->m_rtrmap_mxr[level != 0];
}
/* Calculate number of records in the ondisk realtime rmap btree inode root. */
unsigned int
xfs_rtrmapbt_droot_maxrecs(
unsigned int blocklen,
bool leaf)
{
blocklen -= sizeof(struct xfs_rtrmap_root);
if (leaf)
return blocklen / sizeof(struct xfs_rmap_rec);
return blocklen / (2 * sizeof(struct xfs_rmap_key) +
sizeof(xfs_rtrmap_ptr_t));
}
/*
* Get the maximum records we could store in the on-disk format.
*
* For non-root nodes this is equivalent to xfs_rtrmapbt_get_maxrecs, but
* for the root node this checks the available space in the dinode fork
* so that we can resize the in-memory buffer to match it. After a
* resize to the maximum size this function returns the same value
* as xfs_rtrmapbt_get_maxrecs for the root node, too.
*/
STATIC int
xfs_rtrmapbt_get_dmaxrecs(
struct xfs_btree_cur *cur,
int level)
{
if (level != cur->bc_nlevels - 1)
return cur->bc_mp->m_rtrmap_mxr[level != 0];
return xfs_rtrmapbt_droot_maxrecs(cur->bc_ino.forksize, level == 0);
}
/*
* Convert the ondisk record's offset field into the ondisk key's offset field.
* Fork and bmbt are significant parts of the rmap record key, but written
* status is merely a record attribute.
*/
static inline __be64 ondisk_rec_offset_to_key(const union xfs_btree_rec *rec)
{
return rec->rmap.rm_offset & ~cpu_to_be64(XFS_RMAP_OFF_UNWRITTEN);
}
STATIC void
xfs_rtrmapbt_init_key_from_rec(
union xfs_btree_key *key,
const union xfs_btree_rec *rec)
{
key->rmap.rm_startblock = rec->rmap.rm_startblock;
key->rmap.rm_owner = rec->rmap.rm_owner;
key->rmap.rm_offset = ondisk_rec_offset_to_key(rec);
}
STATIC void
xfs_rtrmapbt_init_high_key_from_rec(
union xfs_btree_key *key,
const union xfs_btree_rec *rec)
{
uint64_t off;
int adj;
adj = be32_to_cpu(rec->rmap.rm_blockcount) - 1;
key->rmap.rm_startblock = rec->rmap.rm_startblock;
be32_add_cpu(&key->rmap.rm_startblock, adj);
key->rmap.rm_owner = rec->rmap.rm_owner;
key->rmap.rm_offset = ondisk_rec_offset_to_key(rec);
if (XFS_RMAP_NON_INODE_OWNER(be64_to_cpu(rec->rmap.rm_owner)) ||
XFS_RMAP_IS_BMBT_BLOCK(be64_to_cpu(rec->rmap.rm_offset)))
return;
off = be64_to_cpu(key->rmap.rm_offset);
off = (XFS_RMAP_OFF(off) + adj) | (off & ~XFS_RMAP_OFF_MASK);
key->rmap.rm_offset = cpu_to_be64(off);
}
STATIC void
xfs_rtrmapbt_init_rec_from_cur(
struct xfs_btree_cur *cur,
union xfs_btree_rec *rec)
{
rec->rmap.rm_startblock = cpu_to_be32(cur->bc_rec.r.rm_startblock);
rec->rmap.rm_blockcount = cpu_to_be32(cur->bc_rec.r.rm_blockcount);
rec->rmap.rm_owner = cpu_to_be64(cur->bc_rec.r.rm_owner);
rec->rmap.rm_offset = cpu_to_be64(
xfs_rmap_irec_offset_pack(&cur->bc_rec.r));
}
STATIC void
xfs_rtrmapbt_init_ptr_from_cur(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *ptr)
{
ptr->l = 0;
}
/*
* Mask the appropriate parts of the ondisk key field for a key comparison.
* Fork and bmbt are significant parts of the rmap record key, but written
* status is merely a record attribute.
*/
static inline uint64_t offset_keymask(uint64_t offset)
{
return offset & ~XFS_RMAP_OFF_UNWRITTEN;
}
STATIC int
xfs_rtrmapbt_cmp_key_with_cur(
struct xfs_btree_cur *cur,
const union xfs_btree_key *key)
{
struct xfs_rmap_irec *rec = &cur->bc_rec.r;
const struct xfs_rmap_key *kp = &key->rmap;
return cmp_int(be32_to_cpu(kp->rm_startblock), rec->rm_startblock) ?:
cmp_int(be64_to_cpu(kp->rm_owner), rec->rm_owner) ?:
cmp_int(offset_keymask(be64_to_cpu(kp->rm_offset)),
offset_keymask(xfs_rmap_irec_offset_pack(rec)));
}
STATIC int
xfs_rtrmapbt_cmp_two_keys(
struct xfs_btree_cur *cur,
const union xfs_btree_key *k1,
const union xfs_btree_key *k2,
const union xfs_btree_key *mask)
{
const struct xfs_rmap_key *kp1 = &k1->rmap;
const struct xfs_rmap_key *kp2 = &k2->rmap;
int d;
/* Doesn't make sense to mask off the physical space part */
ASSERT(!mask || mask->rmap.rm_startblock);
d = cmp_int(be32_to_cpu(kp1->rm_startblock),
be32_to_cpu(kp2->rm_startblock));
if (d)
return d;
if (!mask || mask->rmap.rm_owner) {
d = cmp_int(be64_to_cpu(kp1->rm_owner),
be64_to_cpu(kp2->rm_owner));
if (d)
return d;
}
if (!mask || mask->rmap.rm_offset) {
/* Doesn't make sense to allow offset but not owner */
ASSERT(!mask || mask->rmap.rm_owner);
d = cmp_int(offset_keymask(be64_to_cpu(kp1->rm_offset)),
offset_keymask(be64_to_cpu(kp2->rm_offset)));
if (d)
return d;
}
return 0;
}
static xfs_failaddr_t
xfs_rtrmapbt_verify(
struct xfs_buf *bp)
{
struct xfs_mount *mp = bp->b_target->bt_mount;
struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
xfs_failaddr_t fa;
int level;
if (!xfs_verify_magic(bp, block->bb_magic))
return __this_address;
if (!xfs_has_rmapbt(mp))
return __this_address;
fa = xfs_btree_fsblock_v5hdr_verify(bp, XFS_RMAP_OWN_UNKNOWN);
if (fa)
return fa;
level = be16_to_cpu(block->bb_level);
if (level > mp->m_rtrmap_maxlevels)
return __this_address;
return xfs_btree_fsblock_verify(bp, mp->m_rtrmap_mxr[level != 0]);
}
static void
xfs_rtrmapbt_read_verify(
struct xfs_buf *bp)
{
xfs_failaddr_t fa;
if (!xfs_btree_fsblock_verify_crc(bp))
xfs_verifier_error(bp, -EFSBADCRC, __this_address);
else {
fa = xfs_rtrmapbt_verify(bp);
if (fa)
xfs_verifier_error(bp, -EFSCORRUPTED, fa);
}
if (bp->b_error)
trace_xfs_btree_corrupt(bp, _RET_IP_);
}
static void
xfs_rtrmapbt_write_verify(
struct xfs_buf *bp)
{
xfs_failaddr_t fa;
fa = xfs_rtrmapbt_verify(bp);
if (fa) {
trace_xfs_btree_corrupt(bp, _RET_IP_);
xfs_verifier_error(bp, -EFSCORRUPTED, fa);
return;
}
xfs_btree_fsblock_calc_crc(bp);
}
const struct xfs_buf_ops xfs_rtrmapbt_buf_ops = {
.name = "xfs_rtrmapbt",
.magic = { 0, cpu_to_be32(XFS_RTRMAP_CRC_MAGIC) },
.verify_read = xfs_rtrmapbt_read_verify,
.verify_write = xfs_rtrmapbt_write_verify,
.verify_struct = xfs_rtrmapbt_verify,
};
STATIC int
xfs_rtrmapbt_keys_inorder(
struct xfs_btree_cur *cur,
const union xfs_btree_key *k1,
const union xfs_btree_key *k2)
{
uint32_t x;
uint32_t y;
uint64_t a;
uint64_t b;
x = be32_to_cpu(k1->rmap.rm_startblock);
y = be32_to_cpu(k2->rmap.rm_startblock);
if (x < y)
return 1;
else if (x > y)
return 0;
a = be64_to_cpu(k1->rmap.rm_owner);
b = be64_to_cpu(k2->rmap.rm_owner);
if (a < b)
return 1;
else if (a > b)
return 0;
a = offset_keymask(be64_to_cpu(k1->rmap.rm_offset));
b = offset_keymask(be64_to_cpu(k2->rmap.rm_offset));
if (a <= b)
return 1;
return 0;
}
STATIC int
xfs_rtrmapbt_recs_inorder(
struct xfs_btree_cur *cur,
const union xfs_btree_rec *r1,
const union xfs_btree_rec *r2)
{
uint32_t x;
uint32_t y;
uint64_t a;
uint64_t b;
x = be32_to_cpu(r1->rmap.rm_startblock);
y = be32_to_cpu(r2->rmap.rm_startblock);
if (x < y)
return 1;
else if (x > y)
return 0;
a = be64_to_cpu(r1->rmap.rm_owner);
b = be64_to_cpu(r2->rmap.rm_owner);
if (a < b)
return 1;
else if (a > b)
return 0;
a = offset_keymask(be64_to_cpu(r1->rmap.rm_offset));
b = offset_keymask(be64_to_cpu(r2->rmap.rm_offset));
if (a <= b)
return 1;
return 0;
}
STATIC enum xbtree_key_contig
xfs_rtrmapbt_keys_contiguous(
struct xfs_btree_cur *cur,
const union xfs_btree_key *key1,
const union xfs_btree_key *key2,
const union xfs_btree_key *mask)
{
ASSERT(!mask || mask->rmap.rm_startblock);
/*
* We only support checking contiguity of the physical space component.
* If any callers ever need more specificity than that, they'll have to
* implement it here.
*/
ASSERT(!mask || (!mask->rmap.rm_owner && !mask->rmap.rm_offset));
return xbtree_key_contig(be32_to_cpu(key1->rmap.rm_startblock),
be32_to_cpu(key2->rmap.rm_startblock));
}
static inline void
xfs_rtrmapbt_move_ptrs(
struct xfs_mount *mp,
struct xfs_btree_block *broot,
short old_size,
size_t new_size,
unsigned int numrecs)
{
void *dptr;
void *sptr;
sptr = xfs_rtrmap_broot_ptr_addr(mp, broot, 1, old_size);
dptr = xfs_rtrmap_broot_ptr_addr(mp, broot, 1, new_size);
memmove(dptr, sptr, numrecs * sizeof(xfs_rtrmap_ptr_t));
}
static struct xfs_btree_block *
xfs_rtrmapbt_broot_realloc(
struct xfs_btree_cur *cur,
unsigned int new_numrecs)
{
struct xfs_mount *mp = cur->bc_mp;
struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur);
struct xfs_btree_block *broot;
unsigned int new_size;
unsigned int old_size = ifp->if_broot_bytes;
const unsigned int level = cur->bc_nlevels - 1;
new_size = xfs_rtrmap_broot_space_calc(mp, level, new_numrecs);
/* Handle the nop case quietly. */
if (new_size == old_size)
return ifp->if_broot;
if (new_size > old_size) {
unsigned int old_numrecs;
/*
* If there wasn't any memory allocated before, just allocate
* it now and get out.
*/
if (old_size == 0)
return xfs_broot_realloc(ifp, new_size);
/*
* If there is already an existing if_broot, then we need to
* realloc it and possibly move the node block pointers because
* those are not butted up against the btree block header.
*/
old_numrecs = xfs_rtrmapbt_maxrecs(mp, old_size, level == 0);
broot = xfs_broot_realloc(ifp, new_size);
if (level > 0)
xfs_rtrmapbt_move_ptrs(mp, broot, old_size, new_size,
old_numrecs);
goto out_broot;
}
/*
* We're reducing numrecs. If we're going all the way to zero, just
* free the block.
*/
ASSERT(ifp->if_broot != NULL && old_size > 0);
if (new_size == 0)
return xfs_broot_realloc(ifp, 0);
/*
* Shrink the btree root by possibly moving the rtrmapbt pointers,
* since they are not butted up against the btree block header. Then
* reallocate broot.
*/
if (level > 0)
xfs_rtrmapbt_move_ptrs(mp, ifp->if_broot, old_size, new_size,
new_numrecs);
broot = xfs_broot_realloc(ifp, new_size);
out_broot:
ASSERT(xfs_rtrmap_droot_space(broot) <=
xfs_inode_fork_size(cur->bc_ino.ip, cur->bc_ino.whichfork));
return broot;
}
const struct xfs_btree_ops xfs_rtrmapbt_ops = {
.name = "rtrmap",
.type = XFS_BTREE_TYPE_INODE,
.geom_flags = XFS_BTGEO_OVERLAPPING |
XFS_BTGEO_IROOT_RECORDS,
.rec_len = sizeof(struct xfs_rmap_rec),
/* Overlapping btree; 2 keys per pointer. */
.key_len = 2 * sizeof(struct xfs_rmap_key),
.ptr_len = XFS_BTREE_LONG_PTR_LEN,
.lru_refs = XFS_RMAP_BTREE_REF,
.statoff = XFS_STATS_CALC_INDEX(xs_rtrmap_2),
.sick_mask = XFS_SICK_RG_RMAPBT,
.dup_cursor = xfs_rtrmapbt_dup_cursor,
.alloc_block = xfs_btree_alloc_metafile_block,
.free_block = xfs_btree_free_metafile_block,
.get_minrecs = xfs_rtrmapbt_get_minrecs,
.get_maxrecs = xfs_rtrmapbt_get_maxrecs,
.get_dmaxrecs = xfs_rtrmapbt_get_dmaxrecs,
.init_key_from_rec = xfs_rtrmapbt_init_key_from_rec,
.init_high_key_from_rec = xfs_rtrmapbt_init_high_key_from_rec,
.init_rec_from_cur = xfs_rtrmapbt_init_rec_from_cur,
.init_ptr_from_cur = xfs_rtrmapbt_init_ptr_from_cur,
.cmp_key_with_cur = xfs_rtrmapbt_cmp_key_with_cur,
.buf_ops = &xfs_rtrmapbt_buf_ops,
.cmp_two_keys = xfs_rtrmapbt_cmp_two_keys,
.keys_inorder = xfs_rtrmapbt_keys_inorder,
.recs_inorder = xfs_rtrmapbt_recs_inorder,
.keys_contiguous = xfs_rtrmapbt_keys_contiguous,
.broot_realloc = xfs_rtrmapbt_broot_realloc,
};
/* Allocate a new rt rmap btree cursor. */
struct xfs_btree_cur *
xfs_rtrmapbt_init_cursor(
struct xfs_trans *tp,
struct xfs_rtgroup *rtg)
{
struct xfs_inode *ip = rtg_rmap(rtg);
struct xfs_mount *mp = rtg_mount(rtg);
struct xfs_btree_cur *cur;
xfs_assert_ilocked(ip, XFS_ILOCK_SHARED | XFS_ILOCK_EXCL);
cur = xfs_btree_alloc_cursor(mp, tp, &xfs_rtrmapbt_ops,
mp->m_rtrmap_maxlevels, xfs_rtrmapbt_cur_cache);
cur->bc_ino.ip = ip;
cur->bc_group = xfs_group_hold(rtg_group(rtg));
cur->bc_ino.whichfork = XFS_DATA_FORK;
cur->bc_nlevels = be16_to_cpu(ip->i_df.if_broot->bb_level) + 1;
cur->bc_ino.forksize = xfs_inode_fork_size(ip, XFS_DATA_FORK);
return cur;
}
#ifdef CONFIG_XFS_BTREE_IN_MEM
/*
* Validate an in-memory realtime rmap btree block. Callers are allowed to
* generate an in-memory btree even if the ondisk feature is not enabled.
*/
static xfs_failaddr_t
xfs_rtrmapbt_mem_verify(
struct xfs_buf *bp)
{
struct xfs_mount *mp = bp->b_mount;
struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
xfs_failaddr_t fa;
unsigned int level;
unsigned int maxrecs;
if (!xfs_verify_magic(bp, block->bb_magic))
return __this_address;
fa = xfs_btree_fsblock_v5hdr_verify(bp, XFS_RMAP_OWN_UNKNOWN);
if (fa)
return fa;
level = be16_to_cpu(block->bb_level);
if (xfs_has_rmapbt(mp)) {
if (level >= mp->m_rtrmap_maxlevels)
return __this_address;
} else {
if (level >= xfs_rtrmapbt_maxlevels_ondisk())
return __this_address;
}
maxrecs = xfs_rtrmapbt_maxrecs(mp, XFBNO_BLOCKSIZE, level == 0);
return xfs_btree_memblock_verify(bp, maxrecs);
}
static void
xfs_rtrmapbt_mem_rw_verify(
struct xfs_buf *bp)
{
xfs_failaddr_t fa = xfs_rtrmapbt_mem_verify(bp);
if (fa)
xfs_verifier_error(bp, -EFSCORRUPTED, fa);
}
/* skip crc checks on in-memory btrees to save time */
static const struct xfs_buf_ops xfs_rtrmapbt_mem_buf_ops = {
.name = "xfs_rtrmapbt_mem",
.magic = { 0, cpu_to_be32(XFS_RTRMAP_CRC_MAGIC) },
.verify_read = xfs_rtrmapbt_mem_rw_verify,
.verify_write = xfs_rtrmapbt_mem_rw_verify,
.verify_struct = xfs_rtrmapbt_mem_verify,
};
const struct xfs_btree_ops xfs_rtrmapbt_mem_ops = {
.type = XFS_BTREE_TYPE_MEM,
.geom_flags = XFS_BTGEO_OVERLAPPING,
.rec_len = sizeof(struct xfs_rmap_rec),
/* Overlapping btree; 2 keys per pointer. */
.key_len = 2 * sizeof(struct xfs_rmap_key),
.ptr_len = XFS_BTREE_LONG_PTR_LEN,
.lru_refs = XFS_RMAP_BTREE_REF,
.statoff = XFS_STATS_CALC_INDEX(xs_rtrmap_mem_2),
.dup_cursor = xfbtree_dup_cursor,
.set_root = xfbtree_set_root,
.alloc_block = xfbtree_alloc_block,
.free_block = xfbtree_free_block,
.get_minrecs = xfbtree_get_minrecs,
.get_maxrecs = xfbtree_get_maxrecs,
.init_key_from_rec = xfs_rtrmapbt_init_key_from_rec,
.init_high_key_from_rec = xfs_rtrmapbt_init_high_key_from_rec,
.init_rec_from_cur = xfs_rtrmapbt_init_rec_from_cur,
.init_ptr_from_cur = xfbtree_init_ptr_from_cur,
.cmp_key_with_cur = xfs_rtrmapbt_cmp_key_with_cur,
.buf_ops = &xfs_rtrmapbt_mem_buf_ops,
.cmp_two_keys = xfs_rtrmapbt_cmp_two_keys,
.keys_inorder = xfs_rtrmapbt_keys_inorder,
.recs_inorder = xfs_rtrmapbt_recs_inorder,
.keys_contiguous = xfs_rtrmapbt_keys_contiguous,
};
/* Create a cursor for an in-memory btree. */
struct xfs_btree_cur *
xfs_rtrmapbt_mem_cursor(
struct xfs_rtgroup *rtg,
struct xfs_trans *tp,
struct xfbtree *xfbt)
{
struct xfs_mount *mp = rtg_mount(rtg);
struct xfs_btree_cur *cur;
cur = xfs_btree_alloc_cursor(mp, tp, &xfs_rtrmapbt_mem_ops,
mp->m_rtrmap_maxlevels, xfs_rtrmapbt_cur_cache);
cur->bc_mem.xfbtree = xfbt;
cur->bc_nlevels = xfbt->nlevels;
cur->bc_group = xfs_group_hold(rtg_group(rtg));
return cur;
}
/* Create an in-memory realtime rmap btree. */
int
xfs_rtrmapbt_mem_init(
struct xfs_mount *mp,
struct xfbtree *xfbt,
struct xfs_buftarg *btp,
xfs_rgnumber_t rgno)
{
xfbt->owner = rgno;
return xfbtree_init(mp, xfbt, btp, &xfs_rtrmapbt_mem_ops);
}
#endif /* CONFIG_XFS_BTREE_IN_MEM */
/*
* Install a new rt reverse mapping btree root. Caller is responsible for
* invalidating and freeing the old btree blocks.
*/
void
xfs_rtrmapbt_commit_staged_btree(
struct xfs_btree_cur *cur,
struct xfs_trans *tp)
{
struct xbtree_ifakeroot *ifake = cur->bc_ino.ifake;
struct xfs_ifork *ifp;
int flags = XFS_ILOG_CORE | XFS_ILOG_DBROOT;
ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
ASSERT(ifake->if_fork->if_format == XFS_DINODE_FMT_META_BTREE);
/*
* Free any resources hanging off the real fork, then shallow-copy the
* staging fork's contents into the real fork to transfer everything
* we just built.
*/
ifp = xfs_ifork_ptr(cur->bc_ino.ip, XFS_DATA_FORK);
xfs_idestroy_fork(ifp);
memcpy(ifp, ifake->if_fork, sizeof(struct xfs_ifork));
cur->bc_ino.ip->i_projid = cur->bc_group->xg_gno;
xfs_trans_log_inode(tp, cur->bc_ino.ip, flags);
xfs_btree_commit_ifakeroot(cur, tp, XFS_DATA_FORK);
}
/* Calculate number of records in a rt reverse mapping btree block. */
static inline unsigned int
xfs_rtrmapbt_block_maxrecs(
unsigned int blocklen,
bool leaf)
{
if (leaf)
return blocklen / sizeof(struct xfs_rmap_rec);
return blocklen /
(2 * sizeof(struct xfs_rmap_key) + sizeof(xfs_rtrmap_ptr_t));
}
/*
* Calculate number of records in an rt reverse mapping btree block.
*/
unsigned int
xfs_rtrmapbt_maxrecs(
struct xfs_mount *mp,
unsigned int blocklen,
bool leaf)
{
blocklen -= XFS_RTRMAP_BLOCK_LEN;
return xfs_rtrmapbt_block_maxrecs(blocklen, leaf);
}
/* Compute the max possible height for realtime reverse mapping btrees. */
unsigned int
xfs_rtrmapbt_maxlevels_ondisk(void)
{
unsigned long long max_dblocks;
unsigned int minrecs[2];
unsigned int blocklen;
blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_LBLOCK_CRC_LEN;
minrecs[0] = xfs_rtrmapbt_block_maxrecs(blocklen, true) / 2;
minrecs[1] = xfs_rtrmapbt_block_maxrecs(blocklen, false) / 2;
/*
* Compute the asymptotic maxlevels for an rtrmapbt on any rtreflink fs.
*
* On a reflink filesystem, each block in an rtgroup can have up to
* 2^32 (per the refcount record format) owners, which means that
* theoretically we could face up to 2^64 rmap records. However, we're
* likely to run out of blocks in the data device long before that
* happens, which means that we must compute the max height based on
* what the btree will look like if it consumes almost all the blocks
* in the data device due to maximal sharing factor.
*/
max_dblocks = -1U; /* max ag count */
max_dblocks *= XFS_MAX_CRC_AG_BLOCKS;
return xfs_btree_space_to_height(minrecs, max_dblocks);
}
int __init
xfs_rtrmapbt_init_cur_cache(void)
{
xfs_rtrmapbt_cur_cache = kmem_cache_create("xfs_rtrmapbt_cur",
xfs_btree_cur_sizeof(xfs_rtrmapbt_maxlevels_ondisk()),
0, 0, NULL);
if (!xfs_rtrmapbt_cur_cache)
return -ENOMEM;
return 0;
}
void
xfs_rtrmapbt_destroy_cur_cache(void)
{
kmem_cache_destroy(xfs_rtrmapbt_cur_cache);
xfs_rtrmapbt_cur_cache = NULL;
}
/* Compute the maximum height of an rt reverse mapping btree. */
void
xfs_rtrmapbt_compute_maxlevels(
struct xfs_mount *mp)
{
unsigned int d_maxlevels, r_maxlevels;
if (!xfs_has_rtrmapbt(mp)) {
mp->m_rtrmap_maxlevels = 0;
return;
}
/*
* The realtime rmapbt lives on the data device, which means that its
* maximum height is constrained by the size of the data device and
* the height required to store one rmap record for each block in an
* rt group.
*
* On a reflink filesystem, each rt block can have up to 2^32 (per the
* refcount record format) owners, which means that theoretically we
* could face up to 2^64 rmap records. This makes the computation of
* maxlevels based on record count meaningless, so we only consider the
* size of the data device.
*/
d_maxlevels = xfs_btree_space_to_height(mp->m_rtrmap_mnr,
mp->m_sb.sb_dblocks);
if (xfs_has_rtreflink(mp)) {
mp->m_rtrmap_maxlevels = d_maxlevels + 1;
return;
}
r_maxlevels = xfs_btree_compute_maxlevels(mp->m_rtrmap_mnr,
mp->m_groups[XG_TYPE_RTG].blocks);
/* Add one level to handle the inode root level. */
mp->m_rtrmap_maxlevels = min(d_maxlevels, r_maxlevels) + 1;
}
/* Calculate the rtrmap btree size for some records. */
unsigned long long
xfs_rtrmapbt_calc_size(
struct xfs_mount *mp,
unsigned long long len)
{
return xfs_btree_calc_size(mp->m_rtrmap_mnr, len);
}
/*
* Calculate the maximum rmap btree size.
*/
static unsigned long long
xfs_rtrmapbt_max_size(
struct xfs_mount *mp,
xfs_rtblock_t rtblocks)
{
/* Bail out if we're uninitialized, which can happen in mkfs. */
if (mp->m_rtrmap_mxr[0] == 0)
return 0;
return xfs_rtrmapbt_calc_size(mp, rtblocks);
}
/*
* Figure out how many blocks to reserve and how many are used by this btree.
*/
xfs_filblks_t
xfs_rtrmapbt_calc_reserves(
struct xfs_mount *mp)
{
uint32_t blocks = mp->m_groups[XG_TYPE_RTG].blocks;
if (!xfs_has_rtrmapbt(mp))
return 0;
/* Reserve 1% of the rtgroup or enough for 1 block per record. */
return max_t(xfs_filblks_t, blocks / 100,
xfs_rtrmapbt_max_size(mp, blocks));
}
/* Convert on-disk form of btree root to in-memory form. */
STATIC void
xfs_rtrmapbt_from_disk(
struct xfs_inode *ip,
struct xfs_rtrmap_root *dblock,
unsigned int dblocklen,
struct xfs_btree_block *rblock)
{
struct xfs_mount *mp = ip->i_mount;
struct xfs_rmap_key *fkp;
__be64 *fpp;
struct xfs_rmap_key *tkp;
__be64 *tpp;
struct xfs_rmap_rec *frp;
struct xfs_rmap_rec *trp;
unsigned int rblocklen = xfs_rtrmap_broot_space(mp, dblock);
unsigned int numrecs;
unsigned int maxrecs;
xfs_btree_init_block(mp, rblock, &xfs_rtrmapbt_ops, 0, 0, ip->i_ino);
rblock->bb_level = dblock->bb_level;
rblock->bb_numrecs = dblock->bb_numrecs;
numrecs = be16_to_cpu(dblock->bb_numrecs);
if (be16_to_cpu(rblock->bb_level) > 0) {
maxrecs = xfs_rtrmapbt_droot_maxrecs(dblocklen, false);
fkp = xfs_rtrmap_droot_key_addr(dblock, 1);
tkp = xfs_rtrmap_key_addr(rblock, 1);
fpp = xfs_rtrmap_droot_ptr_addr(dblock, 1, maxrecs);
tpp = xfs_rtrmap_broot_ptr_addr(mp, rblock, 1, rblocklen);
memcpy(tkp, fkp, 2 * sizeof(*fkp) * numrecs);
memcpy(tpp, fpp, sizeof(*fpp) * numrecs);
} else {
frp = xfs_rtrmap_droot_rec_addr(dblock, 1);
trp = xfs_rtrmap_rec_addr(rblock, 1);
memcpy(trp, frp, sizeof(*frp) * numrecs);
}
}
/* Load a realtime reverse mapping btree root in from disk. */
int
xfs_iformat_rtrmap(
struct xfs_inode *ip,
struct xfs_dinode *dip)
{
struct xfs_mount *mp = ip->i_mount;
struct xfs_rtrmap_root *dfp = XFS_DFORK_PTR(dip, XFS_DATA_FORK);
struct xfs_btree_block *broot;
unsigned int numrecs;
unsigned int level;
int dsize;
/*
* growfs must create the rtrmap inodes before adding a realtime volume
* to the filesystem, so we cannot use the rtrmapbt predicate here.
*/
if (!xfs_has_rmapbt(ip->i_mount)) {
xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
return -EFSCORRUPTED;
}
dsize = XFS_DFORK_SIZE(dip, mp, XFS_DATA_FORK);
numrecs = be16_to_cpu(dfp->bb_numrecs);
level = be16_to_cpu(dfp->bb_level);
if (level > mp->m_rtrmap_maxlevels ||
xfs_rtrmap_droot_space_calc(level, numrecs) > dsize) {
xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
return -EFSCORRUPTED;
}
broot = xfs_broot_alloc(xfs_ifork_ptr(ip, XFS_DATA_FORK),
xfs_rtrmap_broot_space_calc(mp, level, numrecs));
if (broot)
xfs_rtrmapbt_from_disk(ip, dfp, dsize, broot);
return 0;
}
/* Convert in-memory form of btree root to on-disk form. */
void
xfs_rtrmapbt_to_disk(
struct xfs_mount *mp,
struct xfs_btree_block *rblock,
unsigned int rblocklen,
struct xfs_rtrmap_root *dblock,
unsigned int dblocklen)
{
struct xfs_rmap_key *fkp;
__be64 *fpp;
struct xfs_rmap_key *tkp;
__be64 *tpp;
struct xfs_rmap_rec *frp;
struct xfs_rmap_rec *trp;
unsigned int numrecs;
unsigned int maxrecs;
ASSERT(rblock->bb_magic == cpu_to_be32(XFS_RTRMAP_CRC_MAGIC));
ASSERT(uuid_equal(&rblock->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid));
ASSERT(rblock->bb_u.l.bb_blkno == cpu_to_be64(XFS_BUF_DADDR_NULL));
ASSERT(rblock->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK));
ASSERT(rblock->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK));
dblock->bb_level = rblock->bb_level;
dblock->bb_numrecs = rblock->bb_numrecs;
numrecs = be16_to_cpu(rblock->bb_numrecs);
if (be16_to_cpu(rblock->bb_level) > 0) {
maxrecs = xfs_rtrmapbt_droot_maxrecs(dblocklen, false);
fkp = xfs_rtrmap_key_addr(rblock, 1);
tkp = xfs_rtrmap_droot_key_addr(dblock, 1);
fpp = xfs_rtrmap_broot_ptr_addr(mp, rblock, 1, rblocklen);
tpp = xfs_rtrmap_droot_ptr_addr(dblock, 1, maxrecs);
memcpy(tkp, fkp, 2 * sizeof(*fkp) * numrecs);
memcpy(tpp, fpp, sizeof(*fpp) * numrecs);
} else {
frp = xfs_rtrmap_rec_addr(rblock, 1);
trp = xfs_rtrmap_droot_rec_addr(dblock, 1);
memcpy(trp, frp, sizeof(*frp) * numrecs);
}
}
/* Flush a realtime reverse mapping btree root out to disk. */
void
xfs_iflush_rtrmap(
struct xfs_inode *ip,
struct xfs_dinode *dip)
{
struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
struct xfs_rtrmap_root *dfp = XFS_DFORK_PTR(dip, XFS_DATA_FORK);
ASSERT(ifp->if_broot != NULL);
ASSERT(ifp->if_broot_bytes > 0);
ASSERT(xfs_rtrmap_droot_space(ifp->if_broot) <=
xfs_inode_fork_size(ip, XFS_DATA_FORK));
xfs_rtrmapbt_to_disk(ip->i_mount, ifp->if_broot, ifp->if_broot_bytes,
dfp, XFS_DFORK_SIZE(dip, ip->i_mount, XFS_DATA_FORK));
}
/*
* Create a realtime rmap btree inode.
*/
int
xfs_rtrmapbt_create(
struct xfs_rtgroup *rtg,
struct xfs_inode *ip,
struct xfs_trans *tp,
bool init)
{
struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
struct xfs_mount *mp = ip->i_mount;
struct xfs_btree_block *broot;
ifp->if_format = XFS_DINODE_FMT_META_BTREE;
ASSERT(ifp->if_broot_bytes == 0);
ASSERT(ifp->if_bytes == 0);
/* Initialize the empty incore btree root. */
broot = xfs_broot_realloc(ifp, xfs_rtrmap_broot_space_calc(mp, 0, 0));
if (broot)
xfs_btree_init_block(mp, broot, &xfs_rtrmapbt_ops, 0, 0,
ip->i_ino);
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE | XFS_ILOG_DBROOT);
return 0;
}
/*
* Initialize an rmap for a realtime superblock using the potentially updated
* rt geometry in the provided @mp.
*/
int
xfs_rtrmapbt_init_rtsb(
struct xfs_mount *mp,
struct xfs_rtgroup *rtg,
struct xfs_trans *tp)
{
struct xfs_rmap_irec rmap = {
.rm_blockcount = mp->m_sb.sb_rextsize,
.rm_owner = XFS_RMAP_OWN_FS,
};
struct xfs_btree_cur *cur;
int error;
ASSERT(xfs_has_rtsb(mp));
ASSERT(rtg_rgno(rtg) == 0);
cur = xfs_rtrmapbt_init_cursor(tp, rtg);
error = xfs_rmap_map_raw(cur, &rmap);
xfs_btree_del_cursor(cur, error);
return error;
}
/*
* Return the highest rgbno currently tracked by the rmap for this rtg.
*/
xfs_rgblock_t
xfs_rtrmap_highest_rgbno(
struct xfs_rtgroup *rtg)
{
struct xfs_btree_block *block = rtg_rmap(rtg)->i_df.if_broot;
union xfs_btree_key key = {};
struct xfs_btree_cur *cur;
if (block->bb_numrecs == 0)
return NULLRGBLOCK;
cur = xfs_rtrmapbt_init_cursor(NULL, rtg);
xfs_btree_get_keys(cur, block, &key);
xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
return be32_to_cpu(key.__rmap_bigkey[1].rm_startblock);
}
|