File: xgb.ggplot.R

package info (click to toggle)
xgboost 1.2.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 8,472 kB
  • sloc: cpp: 32,873; python: 12,641; java: 2,926; xml: 1,024; sh: 662; ansic: 448; makefile: 306; javascript: 19
file content (135 lines) | stat: -rw-r--r-- 4,764 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# ggplot backend for the xgboost plotting facilities


#' @rdname xgb.plot.importance
#' @export
xgb.ggplot.importance <- function(importance_matrix = NULL, top_n = NULL, measure = NULL,
                                  rel_to_first = FALSE, n_clusters = c(1:10), ...) {

  importance_matrix <- xgb.plot.importance(importance_matrix, top_n = top_n, measure = measure,
                                           rel_to_first = rel_to_first, plot = FALSE, ...)
  if (!requireNamespace("ggplot2", quietly = TRUE)) {
    stop("ggplot2 package is required", call. = FALSE)
  }
  if (!requireNamespace("Ckmeans.1d.dp", quietly = TRUE)) {
    stop("Ckmeans.1d.dp package is required", call. = FALSE)
  }

  clusters <- suppressWarnings(
    Ckmeans.1d.dp::Ckmeans.1d.dp(importance_matrix$Importance, n_clusters)
  )
  importance_matrix[, Cluster := as.character(clusters$cluster)]

  plot <-
    ggplot2::ggplot(importance_matrix,
                    ggplot2::aes(x = factor(Feature, levels = rev(Feature)), y = Importance, width = 0.5),
                    environment = environment()) +
    ggplot2::geom_bar(ggplot2::aes(fill = Cluster), stat = "identity", position = "identity") +
    ggplot2::coord_flip() +
    ggplot2::xlab("Features") +
    ggplot2::ggtitle("Feature importance") +
    ggplot2::theme(plot.title = ggplot2::element_text(lineheight = .9, face = "bold"),
                   panel.grid.major.y = ggplot2::element_blank())
  return(plot)
}


#' @rdname xgb.plot.deepness
#' @export
xgb.ggplot.deepness <- function(model = NULL, which = c("2x1", "max.depth", "med.depth", "med.weight")) {

  if (!requireNamespace("ggplot2", quietly = TRUE))
    stop("ggplot2 package is required for plotting the graph deepness.", call. = FALSE)

  which <- match.arg(which)

  dt_depths <- xgb.plot.deepness(model = model, plot = FALSE)
  dt_summaries <- dt_depths[, .(.N, Cover = mean(Cover)), Depth]
  setkey(dt_summaries, 'Depth')

  if (which == "2x1") {
    p1 <-
      ggplot2::ggplot(dt_summaries) +
      ggplot2::geom_bar(ggplot2::aes(x = Depth, y = N), stat = "Identity") +
      ggplot2::xlab("") +
      ggplot2::ylab("Number of leafs") +
      ggplot2::ggtitle("Model complexity") +
      ggplot2::theme(
        plot.title = ggplot2::element_text(lineheight = 0.9, face = "bold"),
        panel.grid.major.y = ggplot2::element_blank(),
        axis.ticks = ggplot2::element_blank(),
        axis.text.x = ggplot2::element_blank()
      )

    p2 <-
      ggplot2::ggplot(dt_summaries) +
      ggplot2::geom_bar(ggplot2::aes(x = Depth, y = Cover), stat = "Identity") +
      ggplot2::xlab("Leaf depth") +
      ggplot2::ylab("Weighted cover")

    multiplot(p1, p2, cols = 1)
    return(invisible(list(p1, p2)))

  } else if (which == "max.depth") {
    p <-
      ggplot2::ggplot(dt_depths[, max(Depth), Tree]) +
      ggplot2::geom_jitter(ggplot2::aes(x = Tree, y = V1),
                           height = 0.15, alpha = 0.4, size = 3, stroke = 0) +
      ggplot2::xlab("tree #") +
      ggplot2::ylab("Max tree leaf depth")
    return(p)

  } else if (which == "med.depth") {
    p <-
      ggplot2::ggplot(dt_depths[, median(as.numeric(Depth)), Tree]) +
      ggplot2::geom_jitter(ggplot2::aes(x = Tree, y = V1),
                           height = 0.15, alpha = 0.4, size = 3, stroke = 0) +
      ggplot2::xlab("tree #") +
      ggplot2::ylab("Median tree leaf depth")
    return(p)

  } else if (which == "med.weight") {
    p <-
      ggplot2::ggplot(dt_depths[, median(abs(Weight)), Tree]) +
      ggplot2::geom_point(ggplot2::aes(x = Tree, y = V1),
                          alpha = 0.4, size = 3, stroke = 0) +
      ggplot2::xlab("tree #") +
      ggplot2::ylab("Median absolute leaf weight")
    return(p)
  }
}

# Plot multiple ggplot graph aligned by rows and columns.
# ... the plots
# cols number of columns
# internal utility function
multiplot <- function(..., cols = 1) {
  plots <- list(...)
  num_plots <- length(plots)

  layout <- matrix(seq(1, cols * ceiling(num_plots / cols)),
                   ncol = cols, nrow = ceiling(num_plots / cols))

  if (num_plots == 1) {
    print(plots[[1]])
  } else {
    grid::grid.newpage()
    grid::pushViewport(grid::viewport(layout = grid::grid.layout(nrow(layout), ncol(layout))))
    for (i in 1:num_plots) {
      # Get the i,j matrix positions of the regions that contain this subplot
      matchidx <- as.data.table(which(layout == i, arr.ind = TRUE))

      print(
        plots[[i]], vp = grid::viewport(
          layout.pos.row = matchidx$row,
          layout.pos.col = matchidx$col
        )
      )
    }
  }
}

globalVariables(c(
  "Cluster", "ggplot", "aes", "geom_bar", "coord_flip", "xlab", "ylab", "ggtitle", "theme",
  "element_blank", "element_text", "V1", "Weight"
))