1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/xgb.ggplot.R, R/xgb.plot.deepness.R
\name{xgb.ggplot.deepness}
\alias{xgb.ggplot.deepness}
\alias{xgb.plot.deepness}
\title{Plot model trees deepness}
\usage{
xgb.ggplot.deepness(
model = NULL,
which = c("2x1", "max.depth", "med.depth", "med.weight")
)
xgb.plot.deepness(
model = NULL,
which = c("2x1", "max.depth", "med.depth", "med.weight"),
plot = TRUE,
...
)
}
\arguments{
\item{model}{either an \code{xgb.Booster} model generated by the \code{xgb.train} function
or a data.table result of the \code{xgb.model.dt.tree} function.}
\item{which}{which distribution to plot (see details).}
\item{plot}{(base R barplot) whether a barplot should be produced.
If FALSE, only a data.table is returned.}
\item{...}{other parameters passed to \code{barplot} or \code{plot}.}
}
\value{
Other than producing plots (when \code{plot=TRUE}), the \code{xgb.plot.deepness} function
silently returns a processed data.table where each row corresponds to a terminal leaf in a tree model,
and contains information about leaf's depth, cover, and weight (which is used in calculating predictions).
The \code{xgb.ggplot.deepness} silently returns either a list of two ggplot graphs when \code{which="2x1"}
or a single ggplot graph for the other \code{which} options.
}
\description{
Visualizes distributions related to depth of tree leafs.
\code{xgb.plot.deepness} uses base R graphics, while \code{xgb.ggplot.deepness} uses the ggplot backend.
}
\details{
When \code{which="2x1"}, two distributions with respect to the leaf depth
are plotted on top of each other:
\itemize{
\item the distribution of the number of leafs in a tree model at a certain depth;
\item the distribution of average weighted number of observations ("cover")
ending up in leafs at certain depth.
}
Those could be helpful in determining sensible ranges of the \code{max_depth}
and \code{min_child_weight} parameters.
When \code{which="max.depth"} or \code{which="med.depth"}, plots of either maximum or median depth
per tree with respect to tree number are created. And \code{which="med.weight"} allows to see how
a tree's median absolute leaf weight changes through the iterations.
This function was inspired by the blog post
\url{https://github.com/aysent/random-forest-leaf-visualization}.
}
\examples{
data(agaricus.train, package='xgboost')
# Change max_depth to a higher number to get a more significant result
bst <- xgboost(data = agaricus.train$data, label = agaricus.train$label, max_depth = 6,
eta = 0.1, nthread = 2, nrounds = 50, objective = "binary:logistic",
subsample = 0.5, min_child_weight = 2)
xgb.plot.deepness(bst)
xgb.ggplot.deepness(bst)
xgb.plot.deepness(bst, which='max.depth', pch=16, col=rgb(0,0,1,0.3), cex=2)
xgb.plot.deepness(bst, which='med.weight', pch=16, col=rgb(0,0,1,0.3), cex=2)
}
\seealso{
\code{\link{xgb.train}}, \code{\link{xgb.model.dt.tree}}.
}
|