File: xgb.plot.multi.trees.Rd

package info (click to toggle)
xgboost 1.2.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 8,472 kB
  • sloc: cpp: 32,873; python: 12,641; java: 2,926; xml: 1,024; sh: 662; ansic: 448; makefile: 306; javascript: 19
file content (82 lines) | stat: -rw-r--r-- 2,900 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/xgb.plot.multi.trees.R
\name{xgb.plot.multi.trees}
\alias{xgb.plot.multi.trees}
\title{Project all trees on one tree and plot it}
\usage{
xgb.plot.multi.trees(
  model,
  feature_names = NULL,
  features_keep = 5,
  plot_width = NULL,
  plot_height = NULL,
  render = TRUE,
  ...
)
}
\arguments{
\item{model}{produced by the \code{xgb.train} function.}

\item{feature_names}{names of each feature as a \code{character} vector.}

\item{features_keep}{number of features to keep in each position of the multi trees.}

\item{plot_width}{width in pixels of the graph to produce}

\item{plot_height}{height in pixels of the graph to produce}

\item{render}{a logical flag for whether the graph should be rendered (see Value).}

\item{...}{currently not used}
}
\value{
When \code{render = TRUE}:
returns a rendered graph object which is an \code{htmlwidget} of class \code{grViz}.
Similar to ggplot objects, it needs to be printed to see it when not running from command line.

When \code{render = FALSE}:
silently returns a graph object which is of DiagrammeR's class \code{dgr_graph}.
This could be useful if one wants to modify some of the graph attributes
before rendering the graph with \code{\link[DiagrammeR]{render_graph}}.
}
\description{
Visualization of the ensemble of trees as a single collective unit.
}
\details{
This function tries to capture the complexity of a gradient boosted tree model
in a cohesive way by compressing an ensemble of trees into a single tree-graph representation.
The goal is to improve the interpretability of a model generally seen as black box.

Note: this function is applicable to tree booster-based models only.

It takes advantage of the fact that the shape of a binary tree is only defined by
its depth (therefore, in a boosting model, all trees have similar shape).

Moreover, the trees tend to reuse the same features.

The function projects each tree onto one, and keeps for each position the
\code{features_keep} first features (based on the Gain per feature measure).

This function is inspired by this blog post:
\url{https://wellecks.wordpress.com/2015/02/21/peering-into-the-black-box-visualizing-lambdamart/}
}
\examples{

data(agaricus.train, package='xgboost')

bst <- xgboost(data = agaricus.train$data, label = agaricus.train$label, max_depth = 15,
               eta = 1, nthread = 2, nrounds = 30, objective = "binary:logistic",
               min_child_weight = 50, verbose = 0)

p <- xgb.plot.multi.trees(model = bst, features_keep = 3)
print(p)

\dontrun{
# Below is an example of how to save this plot to a file.
# Note that for `export_graph` to work, the DiagrammeRsvg and rsvg packages must also be installed.
library(DiagrammeR)
gr <- xgb.plot.multi.trees(model=bst, features_keep = 3, render=FALSE)
export_graph(gr, 'tree.pdf', width=1500, height=600)
}

}