1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
|
\documentclass{article}
\RequirePackage{url}
\usepackage{hyperref}
\RequirePackage{amsmath}
\RequirePackage{natbib}
\RequirePackage[a4paper,lmargin={1.25in},rmargin={1.25in},tmargin={1in},bmargin={1in}]{geometry}
\makeatletter
% \VignetteIndexEntry{xgboost: eXtreme Gradient Boosting}
%\VignetteKeywords{xgboost, gbm, gradient boosting machines}
%\VignettePackage{xgboost}
% \VignetteEngine{knitr::knitr}
\makeatother
\begin{document}
%\SweaveOpts{concordance=TRUE}
<<knitropts,echo=FALSE,message=FALSE>>=
if (require('knitr')) opts_chunk$set(fig.width = 5, fig.height = 5, fig.align = 'center', tidy = FALSE, warning = FALSE, cache = TRUE)
@
%
<<prelim,echo=FALSE>>=
xgboost.version <- packageDescription("xgboost")$Version
@
%
\begin{center}
\vspace*{6\baselineskip}
\rule{\textwidth}{1.6pt}\vspace*{-\baselineskip}\vspace*{2pt}
\rule{\textwidth}{0.4pt}\\[2\baselineskip]
{\LARGE \textbf{xgboost: eXtreme Gradient Boosting}}\\[1.2\baselineskip]
\rule{\textwidth}{0.4pt}\vspace*{-\baselineskip}\vspace{3.2pt}
\rule{\textwidth}{1.6pt}\\[2\baselineskip]
{\Large Tianqi Chen, Tong He}\\[\baselineskip]
{\large Package Version: \Sexpr{xgboost.version}}\\[\baselineskip]
{\large \today}\par
\vfill
\end{center}
\thispagestyle{empty}
\clearpage
\setcounter{page}{1}
\section{Introduction}
This is an introductory document of using the \verb@xgboost@ package in R.
\verb@xgboost@ is short for eXtreme Gradient Boosting package. It is an efficient
and scalable implementation of gradient boosting framework by \citep{friedman2001greedy} \citep{friedman2000additive}.
The package includes efficient linear model solver and tree learning algorithm.
It supports various objective functions, including regression, classification
and ranking. The package is made to be extendible, so that users are also allowed to define their own objectives easily. It has several features:
\begin{enumerate}
\item{Speed: }{\verb@xgboost@ can automatically do parallel computation on
Windows and Linux, with openmp. It is generally over 10 times faster than
\verb@gbm@.}
\item{Input Type: }{\verb@xgboost@ takes several types of input data:}
\begin{itemize}
\item{Dense Matrix: }{R's dense matrix, i.e. \verb@matrix@}
\item{Sparse Matrix: }{R's sparse matrix \verb@Matrix::dgCMatrix@}
\item{Data File: }{Local data files}
\item{xgb.DMatrix: }{\verb@xgboost@'s own class. Recommended.}
\end{itemize}
\item{Sparsity: }{\verb@xgboost@ accepts sparse input for both tree booster
and linear booster, and is optimized for sparse input.}
\item{Customization: }{\verb@xgboost@ supports customized objective function
and evaluation function}
\item{Performance: }{\verb@xgboost@ has better performance on several different
datasets.}
\end{enumerate}
\section{Example with Mushroom data}
In this section, we will illustrate some common usage of \verb@xgboost@. The
Mushroom data is cited from UCI Machine Learning Repository. \citep{Bache+Lichman:2013}
<<Training and prediction with iris>>=
library(xgboost)
data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')
train <- agaricus.train
test <- agaricus.test
bst <- xgboost(data = train$data, label = train$label, max_depth = 2, eta = 1,
nrounds = 2, objective = "binary:logistic")
xgb.save(bst, 'model.save')
bst = xgb.load('model.save')
pred <- predict(bst, test$data)
@
\verb@xgboost@ is the main function to train a \verb@Booster@, i.e. a model.
\verb@predict@ does prediction on the model.
Here we can save the model to a binary local file, and load it when needed.
We can't inspect the trees inside. However we have another function to save the
model in plain text.
<<Dump Model>>=
xgb.dump(bst, 'model.dump')
@
The output looks like
\begin{verbatim}
booster[0]:
0:[f28<1.00001] yes=1,no=2,missing=2
1:[f108<1.00001] yes=3,no=4,missing=4
3:leaf=1.85965
4:leaf=-1.94071
2:[f55<1.00001] yes=5,no=6,missing=6
5:leaf=-1.70044
6:leaf=1.71218
booster[1]:
0:[f59<1.00001] yes=1,no=2,missing=2
1:leaf=-6.23624
2:[f28<1.00001] yes=3,no=4,missing=4
3:leaf=-0.96853
4:leaf=0.784718
\end{verbatim}
It is important to know \verb@xgboost@'s own data type: \verb@xgb.DMatrix@.
It speeds up \verb@xgboost@, and is needed for advanced features such as
training from initial prediction value, weighted training instance.
We can use \verb@xgb.DMatrix@ to construct an \verb@xgb.DMatrix@ object:
<<xgb.DMatrix>>=
dtrain <- xgb.DMatrix(train$data, label = train$label)
class(dtrain)
head(getinfo(dtrain,'label'))
@
We can also save the matrix to a binary file. Then load it simply with
\verb@xgb.DMatrix@
<<save model>>=
xgb.DMatrix.save(dtrain, 'xgb.DMatrix')
dtrain = xgb.DMatrix('xgb.DMatrix')
@
\section{Advanced Examples}
The function \verb@xgboost@ is a simple function with less parameter, in order
to be R-friendly. The core training function is wrapped in \verb@xgb.train@. It is more flexible than \verb@xgboost@, but it requires users to read the document a bit more carefully.
\verb@xgb.train@ only accept a \verb@xgb.DMatrix@ object as its input, while it supports advanced features as custom objective and evaluation functions.
<<Customized loss function>>=
logregobj <- function(preds, dtrain) {
labels <- getinfo(dtrain, "label")
preds <- 1/(1 + exp(-preds))
grad <- preds - labels
hess <- preds * (1 - preds)
return(list(grad = grad, hess = hess))
}
evalerror <- function(preds, dtrain) {
labels <- getinfo(dtrain, "label")
err <- sqrt(mean((preds-labels)^2))
return(list(metric = "MSE", value = err))
}
dtest <- xgb.DMatrix(test$data, label = test$label)
watchlist <- list(eval = dtest, train = dtrain)
param <- list(max_depth = 2, eta = 1)
bst <- xgb.train(param, dtrain, nrounds = 2, watchlist, logregobj, evalerror, maximize = FALSE)
@
The gradient and second order gradient is required for the output of customized
objective function.
We also have \verb@slice@ for row extraction. It is useful in
cross-validation.
For a walkthrough demo, please see \verb@R-package/demo/@ for further
details.
\section{The Higgs Boson competition}
We have made a demo for \href{http://www.kaggle.com/c/higgs-boson}{the Higgs
Boson Machine Learning Challenge}.
Here are the instructions to make a submission
\begin{enumerate}
\item Download the \href{http://www.kaggle.com/c/higgs-boson/data}{datasets}
and extract them to \verb@data/@.
\item Run scripts under \verb@xgboost/demo/kaggle-higgs/@:
\href{https://github.com/tqchen/xgboost/blob/master/demo/kaggle-higgs/higgs-train.R}{higgs-train.R}
and \href{https://github.com/tqchen/xgboost/blob/master/demo/kaggle-higgs/higgs-pred.R}{higgs-pred.R}.
The computation will take less than a minute on Intel i7.
\item Go to the \href{http://www.kaggle.com/c/higgs-boson/submissions/attach}{submission page}
and submit your result.
\end{enumerate}
We provide \href{https://github.com/tqchen/xgboost/blob/master/demo/kaggle-higgs/speedtest.R}{a script}
to compare the time cost on the higgs dataset with \verb@gbm@ and \verb@xgboost@.
The training set contains 350000 records and 30 features.
\verb@xgboost@ can automatically do parallel computation. On a machine with Intel
i7-4700MQ and 24GB memories, we found that \verb@xgboost@ costs about 35 seconds, which is about 20 times faster
than \verb@gbm@. When we limited \verb@xgboost@ to use only one thread, it was
still about two times faster than \verb@gbm@.
Meanwhile, the result from \verb@xgboost@ reaches
\href{http://www.kaggle.com/c/higgs-boson/details/evaluation}{3.60@AMS} with a
single model. This results stands in the
\href{http://www.kaggle.com/c/higgs-boson/leaderboard}{top 30\%} of the
competition.
\bibliographystyle{jss}
\nocite{*} % list uncited references
\bibliography{xgboost}
\end{document}
<<Temp file cleaning, include=FALSE>>=
file.remove("xgb.DMatrix")
file.remove("model.dump")
file.remove("model.save")
@
|