1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
|
#####################
XGBoost Documentation
#####################
**XGBoost** is an optimized distributed gradient boosting library designed to be highly **efficient**, **flexible** and **portable**.
It implements machine learning algorithms under the `Gradient Boosting <https://en.wikipedia.org/wiki/Gradient_boosting>`_ framework.
XGBoost provides a parallel tree boosting (also known as GBDT, GBM) that solve many data science problems in a fast and accurate way.
The same code runs on major distributed environment (Hadoop, SGE, MPI) and can solve problems beyond billions of examples.
********
Contents
********
.. toctree::
:maxdepth: 2
:titlesonly:
install
build
get_started
tutorials/index
faq
GPU Support <gpu/index>
parameter
prediction
treemethod
Python Package <python/index>
R Package <R-package/index>
JVM Package <jvm/index>
Ruby Package <https://github.com/ankane/xgboost-ruby>
Swift Package <https://github.com/kongzii/SwiftXGBoost>
Julia Package <julia>
C Package <c>
C++ Interface <c++>
CLI Interface <cli>
contrib/index
changes/index
|