1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
|
########################
XGBoost4J-Spark Tutorial
########################
**XGBoost4J-Spark** is a project aiming to seamlessly integrate XGBoost and Apache Spark by fitting XGBoost to
Apache Spark's MLLIB framework. With the integration, user can not only uses the high-performant algorithm
implementation of XGBoost, but also leverages the powerful data processing engine of Spark for:
* Feature Engineering: feature extraction, transformation, dimensionality reduction, and selection, etc.
* Pipelines: constructing, evaluating, and tuning ML Pipelines
* Persistence: persist and load machine learning models and even whole Pipelines
This tutorial is to cover the end-to-end process to build a machine learning pipeline with XGBoost4J-Spark. We will discuss
* Using Spark to preprocess data to fit to XGBoost4J-Spark's data interface
* Training a XGBoost model with XGBoost4J-Spark
* Serving XGBoost model (prediction) with Spark
* Building a Machine Learning Pipeline with XGBoost4J-Spark
* Running XGBoost4J-Spark in Production
.. contents::
:backlinks: none
:local:
********************************************
Build an ML Application with XGBoost4J-Spark
********************************************
Refer to XGBoost4J-Spark Dependency
===================================
Before we go into the tour of how to use XGBoost4J-Spark, you should first consult :ref:`Installation from Maven repository <install_jvm_packages>`
in order to add XGBoost4J-Spark as a dependency for your project. We provide both stable releases and snapshots.
.. note:: XGBoost4J-Spark requires Apache Spark 3.0+
XGBoost4J-Spark now requires **Apache Spark 3.0+**. Latest versions of XGBoost4J-Spark uses facilities of `org.apache.spark.ml.param.shared`
extensively to provide for a tight integration with Spark MLLIB framework, and these facilities are not fully available on earlier versions of Spark.
Also, make sure to install Spark directly from `Apache website <https://spark.apache.org/>`_. **Upstream XGBoost is not guaranteed to
work with third-party distributions of Spark, such as Cloudera Spark.** Consult appropriate third parties to obtain their distribution of XGBoost.
Data Preparation
================
As aforementioned, XGBoost4J-Spark seamlessly integrates Spark and XGBoost. The integration enables
users to apply various types of transformation over the training/test datasets with the convenient
and powerful data processing framework: Spark.
In this section, we use `Iris <https://archive.ics.uci.edu/ml/datasets/iris>`_ dataset as an example to
showcase how we use Spark to transform raw dataset and make it fit to the data interface of XGBoost.
Iris dataset is shipped in CSV format. Each instance contains 4 features, "sepal length", "sepal width",
"petal length" and "petal width". In addition, it contains the "class" column, which is essentially the
label with three possible values: "Iris Setosa", "Iris Versicolour" and "Iris Virginica".
Read Dataset with Spark's Built-In Reader
-----------------------------------------
The first thing in data transformation is to load the dataset as Spark's structured data abstraction, DataFrame.
.. code-block:: scala
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.types.{DoubleType, StringType, StructField, StructType}
val spark = SparkSession.builder().getOrCreate()
val schema = new StructType(Array(
StructField("sepal length", DoubleType, true),
StructField("sepal width", DoubleType, true),
StructField("petal length", DoubleType, true),
StructField("petal width", DoubleType, true),
StructField("class", StringType, true)))
val rawInput = spark.read.schema(schema).csv("input_path")
At the first line, we create a instance of `SparkSession <https://spark.apache.org/docs/latest/sql-getting-started.html#starting-point-sparksession>`_
which is the entry of any Spark program working with DataFrame. The ``schema`` variable defines the schema of DataFrame wrapping Iris data.
With this explicitly set schema, we can define the columns' name as well as their types; otherwise the column name would be the default ones
derived by Spark, such as ``_col0``, etc. Finally, we can use Spark's built-in csv reader to load Iris csv file as a DataFrame named ``rawInput``.
Spark also contains many built-in readers for other format. The latest version of Spark supports CSV, JSON, Parquet, and LIBSVM.
Transform Raw Iris Dataset
--------------------------
To make Iris dataset be recognizable to XGBoost, we need to
1. Transform String-typed label, i.e. "class", to Double-typed label.
2. Assemble the feature columns as a vector to fit to the data interface of Spark ML framework.
To convert String-typed label to Double, we can use Spark's built-in feature transformer
`StringIndexer <https://spark.apache.org/docs/latest/api/scala/org/apache/spark/ml/feature/StringIndexer.html>`_.
.. code-block:: scala
import org.apache.spark.ml.feature.StringIndexer
val stringIndexer = new StringIndexer().
setInputCol("class").
setOutputCol("classIndex").
fit(rawInput)
val labelTransformed = stringIndexer.transform(rawInput).drop("class")
With a newly created StringIndexer instance:
1. we set input column, i.e. the column containing String-typed label.
2. we set output column, i.e. the column containing the Double-typed label.
3. Then we ``fit`` StringIndex with our input DataFrame ``rawInput``, so that Spark internals can get information like total number of distinct values, etc.
Now we have a StringIndexer which is ready to be applied to our input DataFrame. To execute the transformation logic of StringIndexer,
we ``transform`` the input DataFrame ``rawInput`` and to keep a concise DataFrame,
we drop the column "class" and only keeps the feature columns and the transformed Double-typed label column (in the last line of the above code snippet).
The ``fit`` and ``transform`` are two key operations in MLLIB. Basically, ``fit`` produces a "transformer", e.g. StringIndexer,
and each transformer applies ``transform`` method on DataFrame to add new column(s) containing transformed features/labels or
prediction results, etc. To understand more about ``fit`` and ``transform``, You can find more details in
`here <http://spark.apache.org/docs/latest/ml-pipeline.html#pipeline-components>`_.
Similarly, we can use another transformer, `VectorAssembler <https://spark.apache.org/docs/latest/api/scala/org/apache/spark/ml/feature/VectorAssembler.html>`_,
to assemble feature columns "sepal length", "sepal width", "petal length" and "petal width" as a vector.
.. code-block:: scala
import org.apache.spark.ml.feature.VectorAssembler
val vectorAssembler = new VectorAssembler().
setInputCols(Array("sepal length", "sepal width", "petal length", "petal width")).
setOutputCol("features")
val xgbInput = vectorAssembler.transform(labelTransformed).select("features", "classIndex")
Now, we have a DataFrame containing only two columns, "features" which contains vector-represented
"sepal length", "sepal width", "petal length" and "petal width" and "classIndex" which has Double-typed
labels. A DataFrame like this (containing vector-represented features and numeric labels) can be fed to XGBoost4J-Spark's training engine directly.
Dealing with missing values
~~~~~~~~~~~~~~~~~~~~~~~~~~~
XGBoost supports missing values by default (`as desribed here <https://xgboost.readthedocs.io/en/latest/faq.html#how-to-deal-with-missing-values>`_).
If given a SparseVector, XGBoost will treat any values absent from the SparseVector as missing. You are also able to
specify to XGBoost to treat a specific value in your Dataset as if it was a missing value. By default XGBoost will treat NaN as the value representing missing.
Example of setting a missing value (e.g. -999) to the "missing" parameter in XGBoostClassifier:
.. code-block:: scala
import ml.dmlc.xgboost4j.scala.spark.XGBoostClassifier
val xgbParam = Map("eta" -> 0.1f,
"missing" -> -999,
"objective" -> "multi:softprob",
"num_class" -> 3,
"num_round" -> 100,
"num_workers" -> 2)
val xgbClassifier = new XGBoostClassifier(xgbParam).
setFeaturesCol("features").
setLabelCol("classIndex")
.. note:: Missing values
If the feature is vector type, the single feature instance could be a SparseVector, where "0" will be treated as the missing value.
In order to get the correct model, XGBoost4j-Spark will convert the SparseVector to array by restoring the "0". However, we can't
assume 0 for missing values as it may be meaningful. So in this case, users need to specify the missing value explicitly
even the missing value has been set to `Float.NaN` by default in the XGBoost4j-Spark.
Training
========
XGBoost supports regression, classification and ranking. While we use Iris dataset in this tutorial to show how we
use XGBoost4J-Spark to resolve a multi-classes classification problem, the usage in Regression and Ranking is very similar to classification.
To train a XGBoost model for classification, we need to create a XGBoostClassifier first:
.. code-block:: scala
import ml.dmlc.xgboost4j.scala.spark.XGBoostClassifier
val xgbParam = Map("eta" -> 0.1f,
"max_depth" -> 2,
"objective" -> "multi:softprob",
"num_class" -> 3)
val xgbClassifier = new XGBoostClassifier(xgbParam).
setNumRound(100).
setNumWorkers(2).
setFeaturesCol("features").
setLabelCol("classIndex")
The available parameters for training a XGBoost model can be found in :doc:`here </parameter>`. In XGBoost4J-Spark, we support
not only the default set of parameters but also the camel-case variant of these parameters to keep consistent with Spark's MLLIB parameters.
Specifically, each parameter in :doc:`this page </parameter>` has its
equivalent form in XGBoost4J-Spark with camel case. For example, to set ``max_depth`` for each tree, you can pass parameter just
like what we did in the above code snippet (as ``max_depth`` wrapped in a Map), or you can do it through setters in XGBoostClassifer:
.. code-block:: scala
val xgbClassifier = new XGBoostClassifier().
setFeaturesCol("features").
setLabelCol("classIndex")
xgbClassifier.setMaxDepth(2)
After we set XGBoostClassifier parameters and feature/label column, we can build a transformer, XGBoostClassificationModel by
fitting XGBoostClassifier with the input DataFrame. This ``fit`` operation is essentially the training process and the generated
model can then be used in prediction.
.. code-block:: scala
val xgbClassificationModel = xgbClassifier.fit(xgbInput)
Early Stopping
----------------
Early stopping is a feature to prevent the unnecessary training iterations. By specifying ``num_early_stopping_rounds`` or
directly call ``setNumEarlyStoppingRounds`` over a XGBoostClassifier or XGBoostRegressor, we can define number of rounds if
the evaluation metric going away from the best iteration and early stop training iterations.
When it comes to custom eval metrics, in additional to ``num_early_stopping_rounds``, you also need to define ``maximize_evaluation_metrics``
or call ``setMaximizeEvaluationMetrics`` to specify whether you want to maximize or minimize the metrics in training. For built-in eval metrics,
XGBoost4J-Spark will automatically select the direction.
For example, we need to maximize the evaluation metrics (set ``maximize_evaluation_metrics`` with true), and set ``num_early_stopping_rounds``
with 5. The evaluation metric of 10th iteration is the maximum one until now. In the following iterations, if there is no evaluation metric
greater than the 10th iteration's (best one), the training would be early stopped at 15th iteration.
Training with Evaluation Dataset
--------------------------------
You can also monitor the performance of the model during training with evaluation dataset. By calling ``setEvalDataset`` over a
XGBoostClassifier, XGBoostRegressor or XGBoostRanker.
Prediction
==========
XGBoost4j-Spark supports two ways for model serving: batch prediction and single instance prediction.
Batch Prediction
----------------
When we get a model, either XGBoostClassificationModel, XGBoostRegressionModel or XGBoostRankerModel, it takes a DataFrame, read the column containing
feature vectors, predict for each feature vector, and output a new DataFrame with the following columns by default:
* XGBoostClassificationModel will output margins (``rawPredictionCol``), probabilities(``probabilityCol``) and the eventual prediction labels (``predictionCol``) for each possible label.
* XGBoostRegressionModel will output prediction label(``predictionCol``).
* XGBoostRankerModel will output prediction label(``predictionCol``).
Batch prediction expects the user to pass the testset in the form of a DataFrame. XGBoost4J-Spark starts a XGBoost worker
for each partition of DataFrame for parallel prediction and generates prediction results for the whole DataFrame in a batch.
.. code-block:: scala
val xgbClassificationModel = xgbClassifier.fit(xgbInput)
val results = xgbClassificationModel.transform(testSet)
With the above code snippet, we get a result DataFrame, result containing margin, probability for each class and the prediction for each instance
.. code-block:: none
+-----------------+----------+--------------------+--------------------+----------+
| features|classIndex| rawPrediction| probability|prediction|
+-----------------+----------+--------------------+--------------------+----------+
|[5.1,3.5,1.4,0.2]| 0.0|[3.45569849014282...|[0.99579632282257...| 0.0|
|[4.9,3.0,1.4,0.2]| 0.0|[3.45569849014282...|[0.99618089199066...| 0.0|
|[4.7,3.2,1.3,0.2]| 0.0|[3.45569849014282...|[0.99643349647521...| 0.0|
|[4.6,3.1,1.5,0.2]| 0.0|[3.45569849014282...|[0.99636095762252...| 0.0|
|[5.0,3.6,1.4,0.2]| 0.0|[3.45569849014282...|[0.99579632282257...| 0.0|
|[5.4,3.9,1.7,0.4]| 0.0|[3.45569849014282...|[0.99428516626358...| 0.0|
|[4.6,3.4,1.4,0.3]| 0.0|[3.45569849014282...|[0.99643349647521...| 0.0|
|[5.0,3.4,1.5,0.2]| 0.0|[3.45569849014282...|[0.99579632282257...| 0.0|
|[4.4,2.9,1.4,0.2]| 0.0|[3.45569849014282...|[0.99618089199066...| 0.0|
|[4.9,3.1,1.5,0.1]| 0.0|[3.45569849014282...|[0.99636095762252...| 0.0|
|[5.4,3.7,1.5,0.2]| 0.0|[3.45569849014282...|[0.99428516626358...| 0.0|
|[4.8,3.4,1.6,0.2]| 0.0|[3.45569849014282...|[0.99643349647521...| 0.0|
|[4.8,3.0,1.4,0.1]| 0.0|[3.45569849014282...|[0.99618089199066...| 0.0|
|[4.3,3.0,1.1,0.1]| 0.0|[3.45569849014282...|[0.99618089199066...| 0.0|
|[5.8,4.0,1.2,0.2]| 0.0|[3.45569849014282...|[0.97809928655624...| 0.0|
|[5.7,4.4,1.5,0.4]| 0.0|[3.45569849014282...|[0.97809928655624...| 0.0|
|[5.4,3.9,1.3,0.4]| 0.0|[3.45569849014282...|[0.99428516626358...| 0.0|
|[5.1,3.5,1.4,0.3]| 0.0|[3.45569849014282...|[0.99579632282257...| 0.0|
|[5.7,3.8,1.7,0.3]| 0.0|[3.45569849014282...|[0.97809928655624...| 0.0|
|[5.1,3.8,1.5,0.3]| 0.0|[3.45569849014282...|[0.99579632282257...| 0.0|
+-----------------+----------+--------------------+--------------------+----------+
Single instance prediction
--------------------------
XGBoostClassificationModel, XGBoostRegressionModel or XGBoostRankerModel supports making prediction on single instance as well.
It accepts a single Vector as feature, and output the prediction label.
However, the overhead of single-instance prediction is high due to the internal overhead of XGBoost, use it carefully!
.. code-block:: scala
val features = xgbInput.head().getAs[Vector]("features")
val result = xgbClassificationModel.predict(features)
Model Persistence
=================
Model and pipeline persistence
------------------------------
A data scientist produces an ML model and hands it over to an engineering team for deployment in a production environment.
Reversely, a trained model may be used by data scientists, for example as a baseline, across the process of data exploration.
So it's important to support model persistence to make the models available across usage scenarios and programming languages.
XGBoost4j-Spark supports saving and loading XGBoostClassifier/XGBoostClassificationModel and XGBoostRegressor/XGBoostRegressionModel
and XGBoostRanker/XGBoostRankerModel to/from file system. It also supports saving and loading a ML pipeline which includes these
estimators and models.
We can save the XGBoostClassificationModel to file system:
.. code-block:: scala
val xgbClassificationModelPath = "/tmp/xgbClassificationModel"
xgbClassificationModel.write.overwrite().save(xgbClassificationModelPath)
and then loading the model in another session:
.. code-block:: scala
import ml.dmlc.xgboost4j.scala.spark.XGBoostClassificationModel
val xgbClassificationModel2 = XGBoostClassificationModel.load(xgbClassificationModelPath)
xgbClassificationModel2.transform(xgbInput)
.. note::
Besides dumping the model to raw format, users are able to dump the model to be json or ubj format.
.. code-block:: scala
val xgbClassificationModelPath = "/tmp/xgbClassificationModel"
xgbClassificationModel.write.overwrite().option("format", "json").save(xgbClassificationModelPath)
With regards to ML pipeline save and load, please refer the next section.
Interact with Other Bindings of XGBoost
---------------------------------------
After we train a model with XGBoost4j-Spark on massive dataset, sometimes we want to do model serving
in single machine or integrate it with other single node libraries for further processing.
After saving the model, we can load this model with single node Python XGBoost directly.
.. code-block:: scala
val xgbClassificationModelPath = "/tmp/xgbClassificationModel"
xgbClassificationModel.write.overwrite().save(xgbClassificationModelPath)
.. code-block:: python
import xgboost as xgb
bst = xgb.Booster({'nthread': 4})
bst.load_model("/tmp/xgbClassificationModel/data/model")
.. note:: Consistency issue between XGBoost4J-Spark and other bindings
There is a consistency issue between XGBoost4J-Spark and other language bindings of XGBoost.
When users use Spark to load training/test data in LIBSVM format with the following code snippet:
.. code-block:: scala
spark.read.format("libsvm").load("trainingset_libsvm")
Spark assumes that the dataset is using 1-based indexing (feature indices staring with 1). However,
when you do prediction with other bindings of XGBoost (e.g. Python API of XGBoost), XGBoost assumes
that the dataset is using 0-based indexing (feature indices starting with 0) by default. It creates a
pitfall for the users who train model with Spark but predict with the dataset in the same format in
other bindings of XGBoost. The solution is to transform the dataset to 0-based indexing before you
predict with, for example, Python API, or you append ``?indexing_mode=1`` to your file path when
loading with DMatirx. For example in Python:
.. code-block:: python
xgb.DMatrix('test.libsvm?indexing_mode=1')
*******************************************
Building a ML Pipeline with XGBoost4J-Spark
*******************************************
Basic ML Pipeline
=================
Spark ML pipeline can combine multiple algorithms or functions into a single pipeline.
It covers from feature extraction, transformation, selection to model training and prediction.
XGBoost4j-Spark makes it feasible to embed XGBoost into such a pipeline seamlessly.
The following example shows how to build such a pipeline consisting of Spark MLlib feature transformer
and XGBoostClassifier estimator.
We still use `Iris <https://archive.ics.uci.edu/ml/datasets/iris>`_ dataset and the ``rawInput`` DataFrame.
First we need to split the dataset into training and test dataset.
.. code-block:: scala
val Array(training, test) = rawInput.randomSplit(Array(0.8, 0.2), 123)
The we build the ML pipeline which includes 4 stages:
* Assemble all features into a single vector column.
* From string label to indexed double label.
* Use XGBoostClassifier to train classification model.
* Convert indexed double label back to original string label.
We have shown the first three steps in the earlier sections, and the last step is finished with a new
transformer `IndexToString <https://spark.apache.org/docs/latest/api/scala/org/apache/spark/ml/feature/IndexToString.html>`_:
.. code-block:: scala
val labelConverter = new IndexToString()
.setInputCol("prediction")
.setOutputCol("realLabel")
.setLabels(stringIndexer.labels)
We need to organize these steps as a Pipeline in Spark ML framework and evaluate the whole pipeline to get a PipelineModel:
.. code-block:: scala
import org.apache.spark.ml.feature._
import org.apache.spark.ml.Pipeline
val pipeline = new Pipeline()
.setStages(Array(assembler, stringIndexer, booster, labelConverter))
val model = pipeline.fit(training)
After we get the PipelineModel, we can make prediction on the test dataset and evaluate the model accuracy.
.. code-block:: scala
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
val prediction = model.transform(test)
val evaluator = new MulticlassClassificationEvaluator()
val accuracy = evaluator.evaluate(prediction)
Pipeline with Hyper-parameter Tunning
=====================================
The most critical operation to maximize the power of XGBoost is to select the optimal parameters for the model.
Tuning parameters manually is a tedious and labor-consuming process. With the latest version of XGBoost4J-Spark,
we can utilize the Spark model selecting tool to automate this process.
The following example shows the code snippet utilizing CrossValidation and MulticlassClassificationEvaluator
to search the optimal combination of two XGBoost parameters, ``max_depth`` and ``eta``. (See :doc:`/parameter`.)
The model producing the maximum accuracy defined by MulticlassClassificationEvaluator is selected and used to
generate the prediction for the test set.
.. code-block:: scala
import org.apache.spark.ml.tuning._
import org.apache.spark.ml.PipelineModel
import ml.dmlc.xgboost4j.scala.spark.XGBoostClassificationModel
val paramGrid = new ParamGridBuilder()
.addGrid(booster.maxDepth, Array(3, 8))
.addGrid(booster.eta, Array(0.2, 0.6))
.build()
val cv = new CrossValidator()
.setEstimator(pipeline)
.setEvaluator(evaluator)
.setEstimatorParamMaps(paramGrid)
.setNumFolds(3)
val cvModel = cv.fit(training)
val bestModel = cvModel.bestModel.asInstanceOf[PipelineModel].stages(2)
.asInstanceOf[XGBoostClassificationModel]
bestModel.extractParamMap()
*********************************
Run XGBoost4J-Spark in Production
*********************************
XGBoost4J-Spark is one of the most important steps to bring XGBoost to production environment easier. In this section,
we introduce three key features to run XGBoost4J-Spark in production.
Parallel/Distributed Training
=============================
The massive size of training dataset is one of the most significant characteristics in production environment. To ensure
that training in XGBoost scales with the data size, XGBoost4J-Spark bridges the distributed/parallel processing framework
of Spark and the parallel/distributed training mechanism of XGBoost.
In XGBoost4J-Spark, each XGBoost worker is wrapped by a Spark task and the training dataset in Spark's memory space is
fed to XGBoost workers in a transparent approach to the user.
In the code snippet where we build XGBoostClassifier, we set parameter ``num_workers`` (or ``numWorkers``).
This parameter controls how many parallel workers we want to have when training a XGBoostClassificationModel.
.. note:: Regarding OpenMP optimization
By default, we allocate a core per each XGBoost worker. Therefore, the OpenMP optimization within each XGBoost worker does
not take effect and the parallelization of training is achieved by running multiple workers (i.e. Spark tasks) at the same time.
If you do want OpenMP optimization, you have to
1. set ``nthread`` to a value larger than 1 when creating XGBoostClassifier/XGBoostRegressor
2. set ``spark.task.cpus`` in Spark to the same value as ``nthread``
Gang Scheduling
===============
XGBoost uses `AllReduce <http://mpitutorial.com/tutorials/mpi-reduce-and-allreduce/>`_.
algorithm to synchronize the stats, e.g. histogram values, of each worker during training. Therefore XGBoost4J-Spark requires
that all of ``nthread * numWorkers`` cores should be available before the training runs.
In the production environment where many users share the same cluster, it's hard to guarantee that your XGBoost4J-Spark application
can get all requested resources for every run. By default, the communication layer in XGBoost will block the whole application when
it requires more resources to be available. This process usually brings unnecessary resource waste as it keeps the ready resources
and try to claim more. Additionally, this usually happens silently and does not bring the attention of users.
XGBoost4J-Spark allows the user to setup a timeout threshold for claiming resources from the cluster. If the application cannot get
enough resources within this time period, the application would fail instead of wasting resources for hanging long. To enable this
feature, you can set with XGBoostClassifier/XGBoostRegressor/XGBoostRanker:
.. code-block:: scala
xgbClassifier.setRabitTrackerTimeout(60000L)
or pass in ``rabit_tracker_timeout`` in ``xgbParamMap`` when building XGBoostClassifier:
.. code-block:: scala
val xgbParam = Map("eta" -> 0.1f,
"max_depth" -> 2,
"objective" -> "multi:softprob",
"num_class" -> 3,
"num_round" -> 100,
"num_workers" -> 2,
"rabit_tracker_timeout" -> 60000L)
val xgbClassifier = new XGBoostClassifier(xgbParam).
setFeaturesCol("features").
setLabelCol("classIndex")
If XGBoost4J-Spark cannot get enough resources for running two XGBoost workers, the application would fail.
Users can have external mechanism to monitor the status of application and get notified for such case.
Checkpoint During Training
==========================
Transient failures are also commonly seen in production environment. To simplify the design of XGBoost,
we stop training if any of the distributed workers fail. However, if the training fails after having been
through a long time, it would be a great waste of resources.
We support creating checkpoint during training to facilitate more efficient recovery from failure. To enable this feature,
you can set how many iterations we build each checkpoint with ``setCheckpointInterval`` and the location of checkpoints
with ``setCheckpointPath``:
.. code-block:: scala
xgbClassifier.setCheckpointInterval(2)
xgbClassifier.setCheckpointPath("/checkpoint_path")
An equivalent way is to pass in parameters in XGBoostClassifier's constructor:
.. code-block:: scala
val xgbParam = Map("eta" -> 0.1f,
"max_depth" -> 2,
"objective" -> "multi:softprob",
"num_class" -> 3,
"num_round" -> 100,
"num_workers" -> 2,
"checkpoint_path" -> "/checkpoints_path",
"checkpoint_interval" -> 2)
val xgbClassifier = new XGBoostClassifier(xgbParam).
setFeaturesCol("features").
setLabelCol("classIndex")
If the training failed during these 100 rounds, the next run of training would start by reading the latest checkpoint
file in ``/checkpoints_path`` and start from the iteration when the checkpoint was built until to next failure or the specified 100 rounds.
***************
External Memory
***************
.. versionadded:: 3.0
.. warning::
The feature is experimental.
Here we refer to the iterator-based external memory instead of the one that uses special
URL parameters. XGBoost-Spark has experimental support for GPU-based external memory
training (:doc:`/jvm/xgboost4j_spark_gpu_tutorial`) since 3.0. When it's used in
combination with GPU-based training, data is first cached on disk and then staged on CPU
memory. See :doc:`/tutorials/external_memory` for general concept and best practices for
the external memory training. In addition, see the doc string of the estimator parameter
`useExternalMemory`. With Spark estimators:
.. code-block:: scala
val xgbClassifier = new XGBoostClassifier(xgbParam)
.setFeaturesCol(featuresNames)
.setLabelCol(labelName)
.setUseExternalMemory(true)
.setDevice("cuda") // CPU is not yet supported
|