1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
|
##############
C API Tutorial
##############
In this tutorial, we are going to install XGBoost library & configure the CMakeLists.txt file of our C/C++ application to link XGBoost library with our application. Later on, we will see some useful tips for using C API and code snippets as examples to use various functions available in C API to perform basic task like loading, training model & predicting on test dataset. For API reference, please visit :doc:`/c`
.. contents::
:backlinks: none
:local:
************
Requirements
************
Install CMake - Follow the `cmake installation documentation <https://cmake.org/install/>`_ for instructions.
Install Conda - Follow the `conda installation documentation <https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html>`_ for instructions
*************************************
Install XGBoost on conda environment
*************************************
Run the following commands on your terminal. The below commands will install the XGBoost in your XGBoost folder of the repository cloned
.. code-block:: bash
# clone the XGBoost repository & its submodules
git clone --recursive https://github.com/dmlc/xgboost
cd xgboost
# Activate the Conda environment, into which we'll install XGBoost
conda activate [env_name]
# Build the compiled version of XGBoost inside the build folder
cmake -B build -S . -DCMAKE_INSTALL_PREFIX=$CONDA_PREFIX
# install XGBoost in your conda environment (usually under [your home directory]/miniconda3)
cmake --build build --target install
*********************************************************************
Configure CMakeList.txt file of your application to link with XGBoost
*********************************************************************
Here, we assume that your C++ application is using CMake for builds.
Use ``find_package()`` and ``target_link_libraries()`` in your application's CMakeList.txt to link with the XGBoost library:
.. code-block:: cmake
cmake_minimum_required(VERSION 3.18)
project(your_project_name LANGUAGES C CXX VERSION your_project_version)
find_package(xgboost REQUIRED)
add_executable(your_project_name /path/to/project_file.c)
target_link_libraries(your_project_name xgboost::xgboost)
To ensure that CMake can locate the XGBoost library, supply ``-DCMAKE_PREFIX_PATH=$CONDA_PREFIX`` argument when invoking CMake. This option instructs CMake to locate the XGBoost library in ``$CONDA_PREFIX``, which is where your Conda environment is located.
.. code-block:: bash
# Activate the Conda environment where we previously installed XGBoost
conda activate [env_name]
# Invoke CMake with CMAKE_PREFIX_PATH
cmake -B build -S . -DCMAKE_PREFIX_PATH=$CONDA_PREFIX
# Build your application
cmake --build build
************************
Useful Tips To Remember
************************
Below are some useful tips while using C API:
1. Error handling: Always check the return value of the C API functions.
a. In a C application: Use the following macro to guard all calls to XGBoost's C API functions. The macro prints all the error/ exception occurred:
.. highlight:: c
:linenothreshold: 5
.. code-block:: c
#define safe_xgboost(call) { \
int err = (call); \
if (err != 0) { \
fprintf(stderr, "%s:%d: error in %s: %s\n", __FILE__, __LINE__, #call, XGBGetLastError()); \
exit(1); \
} \
}
In your application, wrap all C API function calls with the macro as follows:
.. code-block:: c
DMatrixHandle train;
safe_xgboost(XGDMatrixCreateFromFile("/path/to/training/dataset/", silent, &train));
b. In a C++ application: modify the macro ``safe_xgboost`` to throw an exception upon an error.
.. highlight:: cpp
:linenothreshold: 5
.. code-block:: cpp
#define safe_xgboost(call) { \
int err = (call); \
if (err != 0) { \
throw std::runtime_error(std::string(__FILE__) + ":" + std::to_string(__LINE__) + \
": error in " + #call + ":" + XGBGetLastError()); \
} \
}
c. Assertion technique: It works both in C/ C++. If expression evaluates to 0 (false), then the expression, source code filename, and line number are sent to the standard error, and then abort() function is called. It can be used to test assumptions made by you in the code.
.. code-block:: c
DMatrixHandle dmat;
assert( XGDMatrixCreateFromFile("training_data.libsvm", 0, &dmat) == 0);
2. Always remember to free the allocated space by BoosterHandle & DMatrixHandle appropriately:
.. code-block:: c
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <xgboost/c_api.h>
int main(int argc, char** argv) {
int silent = 0;
BoosterHandle booster;
// do something with booster
//free the memory
XGBoosterFree(booster);
DMatrixHandle DMatrixHandle_param;
// do something with DMatrixHandle_param
// free the memory
XGDMatrixFree(DMatrixHandle_param);
return 0;
}
3. For tree models, it is important to use consistent data formats during training and scoring/ predicting otherwise it will result in wrong outputs.
Example if we our training data is in ``dense matrix`` format then your prediction dataset should also be a ``dense matrix`` or if training in ``libsvm`` format then dataset for prediction should also be in ``libsvm`` format.
4. Always use strings for setting values to the parameters in booster handle object. The parameter value can be of any data type (e.g. int, char, float, double, etc), but they should always be encoded as strings.
.. code-block:: c
BoosterHandle booster;
XGBoosterSetParam(booster, "parameter_name", "0.1");
**************************************************************
Sample examples along with Code snippet to use C API functions
**************************************************************
1. If the dataset is available in a file, it can be loaded into a ``DMatrix`` object using the :cpp:func:`XGDMatrixCreateFromFile`
.. code-block:: c
DMatrixHandle data; // handle to DMatrix
// Load the data from file & store it in data variable of DMatrixHandle datatype
safe_xgboost(XGDMatrixCreateFromFile("/path/to/file/filename", silent, &data));
2. You can also create a ``DMatrix`` object from a 2D Matrix using the :cpp:func:`XGDMatrixCreateFromMat`
.. code-block:: c
// 1D matrix
const int data1[] = { 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 };
// 2D matrix
const int ROWS = 6, COLS = 3;
const int data2[ROWS][COLS] = { {1, 2, 3}, {2, 4, 6}, {3, -1, 9}, {4, 8, -1}, {2, 5, 1}, {0, 1, 5} };
DMatrixHandle dmatrix1, dmatrix2;
// Pass the matrix, no of rows & columns contained in the matrix variable
// here '0' represents the missing value in the matrix dataset
// dmatrix variable will contain the created DMatrix using it
safe_xgboost(XGDMatrixCreateFromMat(data1, 1, 50, 0, &dmatrix));
// here -1 represents the missing value in the matrix dataset
safe_xgboost(XGDMatrixCreateFromMat(data2, ROWS, COLS, -1, &dmatrix2));
3. Create a Booster object for training & testing on dataset using :cpp:func:`XGBoosterCreate`
.. code-block:: c
BoosterHandle booster;
const int eval_dmats_size;
// We assume that training and test data have been loaded into 'train' and 'test'
DMatrixHandle eval_dmats[eval_dmats_size] = {train, test};
safe_xgboost(XGBoosterCreate(eval_dmats, eval_dmats_size, &booster));
4. For each ``DMatrix`` object, set the labels using :cpp:func:`XGDMatrixSetFloatInfo`. Later you can access the label using :cpp:func:`XGDMatrixGetFloatInfo`.
.. code-block:: c
const int ROWS=5, COLS=3;
const int data[ROWS][COLS] = { {1, 2, 3}, {2, 4, 6}, {3, -1, 9}, {4, 8, -1}, {2, 5, 1}, {0, 1, 5} };
DMatrixHandle dmatrix;
safe_xgboost(XGDMatrixCreateFromMat(data, ROWS, COLS, -1, &dmatrix));
// variable to store labels for the dataset created from above matrix
float labels[ROWS];
for (int i = 0; i < ROWS; i++) {
labels[i] = i;
}
// Loading the labels
safe_xgboost(XGDMatrixSetFloatInfo(dmatrix, "label", labels, ROWS));
// reading the labels and store the length of the result
bst_ulong result_len;
// labels result
const float *result;
safe_xgboost(XGDMatrixGetFloatInfo(dmatrix, "label", &result_len, &result));
for(unsigned int i = 0; i < result_len; i++) {
printf("label[%i] = %f\n", i, result[i]);
}
5. Set the parameters for the ``Booster`` object according to the requirement using :cpp:func:`XGBoosterSetParam` . Check out the full list of parameters available :doc:`here </parameter>` .
.. code-block :: c
BoosterHandle booster;
safe_xgboost(XGBoosterSetParam(booster, "booster", "gblinear"));
// default max_depth =6
safe_xgboost(XGBoosterSetParam(booster, "max_depth", "3"));
// default eta = 0.3
safe_xgboost(XGBoosterSetParam(booster, "eta", "0.1"));
6. Train & evaluate the model using :cpp:func:`XGBoosterUpdateOneIter` and :cpp:func:`XGBoosterEvalOneIter` respectively.
.. code-block:: c
int num_of_iterations = 20;
const char* eval_names[eval_dmats_size] = {"train", "test"};
const char* eval_result = NULL;
for (int i = 0; i < num_of_iterations; ++i) {
// Update the model performance for each iteration
safe_xgboost(XGBoosterUpdateOneIter(booster, i, train));
// Give the statistics for the learner for training & testing dataset in terms of error after each iteration
safe_xgboost(XGBoosterEvalOneIter(booster, i, eval_dmats, eval_names, eval_dmats_size, &eval_result));
printf("%s\n", eval_result);
}
.. note:: For customized loss function, use :cpp:func:`XGBoosterBoostOneIter` instead and manually specify the gradient and 2nd order gradient.
7. Predict the result on a test set using :cpp:func:`XGBoosterPredictFromDMatrix`
.. code-block:: c
char const config[] =
"{\"training\": false, \"type\": 0, "
"\"iteration_begin\": 0, \"iteration_end\": 0, \"strict_shape\": false}";
/* Shape of output prediction */
uint64_t const* out_shape;
/* Dimension of output prediction */
uint64_t out_dim;
/* Pointer to a thread local contiguous array, assigned in prediction function. */
float const* out_result = NULL;
safe_xgboost(
XGBoosterPredictFromDMatrix(booster, dmatrix, config, &out_shape, &out_dim, &out_result));
for (unsigned int i = 0; i < output_length; i++){
printf("prediction[%i] = %f \n", i, output_result[i]);
}
8. Get the number of features in your dataset using :cpp:func:`XGBoosterGetNumFeature`.
.. code-block:: c
bst_ulong num_of_features = 0;
// Assuming booster variable of type BoosterHandle is already declared
// and dataset is loaded and trained on booster
// storing the results in num_of_features variable
safe_xgboost(XGBoosterGetNumFeature(booster, &num_of_features));
// Printing number of features by type conversion of num_of_features variable from bst_ulong to unsigned long
printf("num_feature: %lu\n", (unsigned long)(num_of_features));
9. Save the model using :cpp:func:`XGBoosterSaveModel`
.. code-block:: c
BoosterHandle booster;
const char *model_path = "/path/of/model.json";
safe_xgboost(XGBoosterSaveModel(booster, model_path));
10. Load the model using :cpp:func:`XGBoosterLoadModel`
.. code-block:: c
BoosterHandle booster;
const char *model_path = "/path/of/model.json";
// create booster handle first
safe_xgboost(XGBoosterCreate(NULL, 0, &booster));
// set the model parameters here
// load model
safe_xgboost(XGBoosterLoadModel(booster, model_path));
// predict the model here
11. Free all the internal structure used in your code using :cpp:func:`XGDMatrixFree` and :cpp:func:`XGBoosterFree`. This step is important to prevent memory leak.
.. code-block:: c
safe_xgboost(XGDMatrixFree(dmatrix));
safe_xgboost(XGBoosterFree(booster));
|