1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
|
############
DART booster
############
XGBoost mostly combines a huge number of regression trees with a small learning rate.
In this situation, trees added early are significant and trees added late are unimportant.
Vinayak and Gilad-Bachrach proposed a new method to add dropout techniques from the deep neural net community to boosted trees, and reported better results in some situations.
This is a instruction of new tree booster ``dart``.
**************
Original paper
**************
Rashmi Korlakai Vinayak, Ran Gilad-Bachrach. "DART: Dropouts meet Multiple Additive Regression Trees." [`PMLR <http://proceedings.mlr.press/v38/korlakaivinayak15.pdf>`_, `arXiv <https://arxiv.org/abs/1505.01866>`_].
********
Features
********
- Drop trees in order to solve the over-fitting.
- Trivial trees (to correct trivial errors) may be prevented.
Because of the randomness introduced in the training, expect the following few differences:
- Training can be slower than ``gbtree`` because the random dropout prevents usage of the prediction buffer.
- The early stop might not be stable, due to the randomness.
************
How it works
************
- In :math:`m`-th training round, suppose :math:`k` trees are selected to be dropped.
- Let :math:`D = \sum_{i \in \mathbf{K}} F_i` be the leaf scores of dropped trees and :math:`F_m = \eta \tilde{F}_m` be the leaf scores of a new tree.
- The objective function is as follows:
.. math::
\mathrm{Obj}
= \sum_{j=1}^n L \left( y_j, \hat{y}_j^{m-1} - D_j + \tilde{F}_m \right)
+ \Omega \left( \tilde{F}_m \right).
- :math:`D` and :math:`F_m` are overshooting, so using scale factor
.. math::
\hat{y}_j^m = \sum_{i \not\in \mathbf{K}} F_i + a \left( \sum_{i \in \mathbf{K}} F_i + b F_m \right) .
**********
Parameters
**********
The booster ``dart`` inherits ``gbtree`` booster, so it supports all parameters that ``gbtree`` does, such as ``eta``, ``gamma``, ``max_depth`` etc.
Additional parameters are noted below:
* ``sample_type``: type of sampling algorithm.
- ``uniform``: (default) dropped trees are selected uniformly.
- ``weighted``: dropped trees are selected in proportion to weight.
* ``normalize_type``: type of normalization algorithm.
- ``tree``: (default) New trees have the same weight of each of dropped trees.
.. math::
a \left( \sum_{i \in \mathbf{K}} F_i + \frac{1}{k} F_m \right)
&= a \left( \sum_{i \in \mathbf{K}} F_i + \frac{\eta}{k} \tilde{F}_m \right) \\
&\sim a \left( 1 + \frac{\eta}{k} \right) D \\
&= a \frac{k + \eta}{k} D = D , \\
&\quad a = \frac{k}{k + \eta}
- ``forest``: New trees have the same weight of sum of dropped trees (forest).
.. math::
a \left( \sum_{i \in \mathbf{K}} F_i + F_m \right)
&= a \left( \sum_{i \in \mathbf{K}} F_i + \eta \tilde{F}_m \right) \\
&\sim a \left( 1 + \eta \right) D \\
&= a (1 + \eta) D = D , \\
&\quad a = \frac{1}{1 + \eta} .
* ``rate_drop``: dropout rate.
- range: [0.0, 1.0]
* ``skip_drop``: probability of skipping dropout.
- If a dropout is skipped, new trees are added in the same manner as gbtree.
- range: [0.0, 1.0]
*************
Sample Script
*************
.. code-block:: python
import xgboost as xgb
# read in data
dtrain = xgb.DMatrix('demo/data/agaricus.txt.train?format=libsvm')
dtest = xgb.DMatrix('demo/data/agaricus.txt.test?format=libsvm')
# specify parameters via map
param = {'booster': 'dart',
'max_depth': 5, 'learning_rate': 0.1,
'objective': 'binary:logistic',
'sample_type': 'uniform',
'normalize_type': 'tree',
'rate_drop': 0.1,
'skip_drop': 0.5}
num_round = 50
bst = xgb.train(param, dtrain, num_round)
preds = bst.predict(dtest)
|