File: test_c_api.cc

package info (click to toggle)
xgboost 3.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 13,796 kB
  • sloc: cpp: 67,502; python: 35,503; java: 4,676; ansic: 1,426; sh: 1,320; xml: 1,197; makefile: 204; javascript: 19
file content (712 lines) | stat: -rw-r--r-- 24,766 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
/**
 * Copyright 2019-2025, XGBoost contributors
 */
#include <gtest/gtest.h>
#include <xgboost/c_api.h>
#include <xgboost/data.h>
#include <xgboost/json.h>  // Json
#include <xgboost/learner.h>
#include <xgboost/version_config.h>

#include <algorithm>   // for copy_n
#include <array>       // for array
#include <cstddef>     // std::size_t
#include <filesystem>  // std::filesystem
#include <limits>      // std::numeric_limits
#include <string>      // std::string
#include <vector>

#include "../../../src/c_api/c_api_error.h"
#include "../../../src/common/io.h"
#include "../../../src/data/adapter.h"              // for ArrayAdapter
#include "../../../src/data/array_interface.h"      // for ArrayInterface
#include "../../../src/data/batch_utils.h"          // for MatchingPageBytes
#include "../../../src/data/gradient_index.h"       // for GHistIndexMatrix
#include "../../../src/data/iterative_dmatrix.h"    // for IterativeDMatrix
#include "../../../src/data/proxy_dmatrix.h"        // for DMatrixProxy
#include "../../../src/data/sparse_page_dmatrix.h"  // for SparsePageDMatrix
#include "../helpers.h"

TEST(CAPI, XGDMatrixCreateFromMatOmp) {
  std::vector<bst_ulong> num_rows = {100, 11374, 15000};
  for (auto row : num_rows) {
    bst_ulong num_cols = 50;
    int num_missing = 5;
    DMatrixHandle handle;
    std::vector<float> data(num_cols * row, 1.5);
    for (int i = 0; i < num_missing; i++) {
      data[i] = std::numeric_limits<float>::quiet_NaN();
    }

    XGDMatrixCreateFromMat_omp(data.data(), row, num_cols,
                               std::numeric_limits<float>::quiet_NaN(), &handle,
                               0);

    std::shared_ptr<xgboost::DMatrix> *dmat =
        static_cast<std::shared_ptr<xgboost::DMatrix> *>(handle);
    xgboost::MetaInfo &info = (*dmat)->Info();
    ASSERT_EQ(info.num_col_, num_cols);
    ASSERT_EQ(info.num_row_, row);
    ASSERT_EQ(info.num_nonzero_, num_cols * row - num_missing);

    for (const auto &batch : (*dmat)->GetBatches<xgboost::SparsePage>()) {
      auto page = batch.GetView();
      for (size_t i = 0; i < batch.Size(); i++) {
        auto inst = page[i];
        for (auto e : inst) {
          ASSERT_EQ(e.fvalue, 1.5);
        }
      }
    }
    delete dmat;
  }
}

namespace xgboost {

TEST(CAPI, Version) {
  int patch {0};
  XGBoostVersion(NULL, NULL, &patch);  // NOLINT
  ASSERT_EQ(patch, XGBOOST_VER_PATCH);
}

TEST(CAPI, XGDMatrixCreateFromCSR) {
  HostDeviceVector<std::size_t> indptr{0, 3};
  HostDeviceVector<double> data{0.0, 1.0, 2.0};
  HostDeviceVector<std::size_t> indices{0, 1, 2};
  auto indptr_arr = GetArrayInterface(&indptr, 2, 1);
  auto indices_arr = GetArrayInterface(&indices, 3, 1);
  auto data_arr = GetArrayInterface(&data, 3, 1);
  std::string sindptr, sindices, sdata, sconfig;
  Json::Dump(indptr_arr, &sindptr);
  Json::Dump(indices_arr, &sindices);
  Json::Dump(data_arr, &sdata);
  Json config{Object{}};
  config["missing"] = Number{std::numeric_limits<float>::quiet_NaN()};
  config["data_split_mode"] = Integer{static_cast<int64_t>(DataSplitMode::kCol)};
  Json::Dump(config, &sconfig);

  DMatrixHandle handle;
  XGDMatrixCreateFromCSR(sindptr.c_str(), sindices.c_str(), sdata.c_str(), 3, sconfig.c_str(),
                         &handle);
  bst_ulong n;
  ASSERT_EQ(XGDMatrixNumRow(handle, &n), 0);
  ASSERT_EQ(n, 1);
  ASSERT_EQ(XGDMatrixNumCol(handle, &n), 0);
  ASSERT_EQ(n, 3);
  ASSERT_EQ(XGDMatrixNumNonMissing(handle, &n), 0);
  ASSERT_EQ(n, 3);
  ASSERT_EQ(XGDMatrixDataSplitMode(handle, &n), 0);
  ASSERT_EQ(n, static_cast<int64_t>(DataSplitMode::kCol));

  std::shared_ptr<xgboost::DMatrix> *pp_fmat =
      static_cast<std::shared_ptr<xgboost::DMatrix> *>(handle);
  ASSERT_EQ((*pp_fmat)->Ctx()->Threads(), AllThreadsForTest());

  XGDMatrixFree(handle);
}

TEST(CAPI, ConfigIO) {
  size_t constexpr kRows = 10;
  auto p_dmat = RandomDataGenerator(kRows, 10, 0).GenerateDMatrix();
  std::vector<std::shared_ptr<DMatrix>> mat {p_dmat};
  std::vector<bst_float> labels(kRows);
  for (size_t i = 0; i < labels.size(); ++i) {
    labels[i] = i;
  }
  p_dmat->Info().labels.Data()->HostVector() = labels;
  p_dmat->Info().labels.Reshape(kRows);

  std::shared_ptr<Learner> learner { Learner::Create(mat) };

  BoosterHandle handle = learner.get();
  learner->UpdateOneIter(0, p_dmat);

  std::array<char const* , 1> out;
  bst_ulong len {0};
  XGBoosterSaveJsonConfig(handle, &len, out.data());

  std::string config_str_0 { out[0] };
  auto config_0 = Json::Load({config_str_0.c_str(), config_str_0.size()});
  XGBoosterLoadJsonConfig(handle, out[0]);

  bst_ulong len_1 {0};
  std::string config_str_1 { out[0] };
  XGBoosterSaveJsonConfig(handle, &len_1, out.data());
  auto config_1 = Json::Load({config_str_1.c_str(), config_str_1.size()});

  ASSERT_EQ(config_0, config_1);
}

TEST(CAPI, JsonModelIO) {
  size_t constexpr kRows = 10;
  size_t constexpr kCols = 10;
  auto tempdir = std::filesystem::temp_directory_path();

  auto p_dmat = RandomDataGenerator(kRows, kCols, 0).GenerateDMatrix();
  std::vector<std::shared_ptr<DMatrix>> mat {p_dmat};
  std::vector<bst_float> labels(kRows);
  for (size_t i = 0; i < labels.size(); ++i) {
    labels[i] = i;
  }
  p_dmat->Info().labels.Data()->HostVector() = labels;
  p_dmat->Info().labels.Reshape(kRows);

  std::shared_ptr<Learner> learner { Learner::Create(mat) };

  learner->UpdateOneIter(0, p_dmat);
  BoosterHandle handle = learner.get();

  auto modelfile_0 = tempdir / std::filesystem::u8path(u8"모델_0.json");
  XGBoosterSaveModel(handle, modelfile_0.u8string().c_str());
  XGBoosterLoadModel(handle, modelfile_0.u8string().c_str());

  bst_ulong num_feature {0};
  ASSERT_EQ(XGBoosterGetNumFeature(handle, &num_feature), 0);
  ASSERT_EQ(num_feature, kCols);

  auto modelfile_1 = tempdir / "model_1.json";
  XGBoosterSaveModel(handle, modelfile_1.u8string().c_str());

  auto model_str_0 = common::LoadSequentialFile(modelfile_0.u8string());
  auto model_str_1 = common::LoadSequentialFile(modelfile_1.u8string());

  ASSERT_EQ(model_str_0.front(), '{');
  ASSERT_EQ(model_str_0, model_str_1);

  /**
   * In memory
   */
  bst_ulong len{0};
  char const *data;
  XGBoosterSaveModelToBuffer(handle, R"({"format": "ubj"})", &len, &data);
  ASSERT_GT(len, 3);

  XGBoosterLoadModelFromBuffer(handle, data, len);
  char const *saved;
  bst_ulong saved_len{0};
  XGBoosterSaveModelToBuffer(handle, R"({"format": "ubj"})", &saved_len, &saved);
  ASSERT_EQ(len, saved_len);
  auto l = StringView{data, static_cast<size_t>(len)};
  auto r = StringView{saved, static_cast<size_t>(saved_len)};
  ASSERT_EQ(l.size(), r.size());
  ASSERT_EQ(l, r);

  std::string buffer;
  Json::Dump(Json::Load(l, std::ios::binary), &buffer);
  ASSERT_EQ(model_str_0.size(), buffer.size());
  ASSERT_EQ(model_str_0.back(), '}');
  ASSERT_TRUE(std::equal(model_str_0.begin(), model_str_0.end() - 1, buffer.begin()));

  ASSERT_EQ(XGBoosterSaveModelToBuffer(handle, R"({})", &len, &data), -1);
  ASSERT_EQ(XGBoosterSaveModelToBuffer(handle, R"({"format": "foo"})", &len, &data), -1);
}

TEST(CAPI, CatchDMLCError) {
  DMatrixHandle out;
  ASSERT_EQ(XGDMatrixCreateFromFile("foo", 0, &out), -1);
  EXPECT_THROW({ dmlc::Stream::Create("foo", "r"); },  dmlc::Error);
}

TEST(CAPI, CatchDMLCErrorURI) {
  Json config{Object()};
  config["uri"] = String{"foo"};
  config["silent"] = Integer{0};
  std::string config_str;
  Json::Dump(config, &config_str);
  DMatrixHandle out;
  ASSERT_EQ(XGDMatrixCreateFromURI(config_str.c_str(), &out), -1);
  EXPECT_THROW({ dmlc::Stream::Create("foo", "r"); },  dmlc::Error);
}

TEST(CAPI, DMatrixSetFeatureName) {
  size_t constexpr kRows = 10;
  bst_feature_t constexpr kCols = 2;

  DMatrixHandle handle;
  std::vector<float> data(kCols * kRows, 1.5);

  XGDMatrixCreateFromMat_omp(data.data(), kRows, kCols,
                             std::numeric_limits<float>::quiet_NaN(), &handle,
                             0);
  std::vector<std::string> feature_names;
  for (bst_feature_t i = 0; i < kCols; ++i) {
    feature_names.emplace_back(std::to_string(i));
  }
  std::vector<char const*> c_feature_names;
  c_feature_names.resize(feature_names.size());
  std::transform(feature_names.cbegin(), feature_names.cend(),
                 c_feature_names.begin(),
                 [](auto const &str) { return str.c_str(); });
  XGDMatrixSetStrFeatureInfo(handle, u8"feature_name", c_feature_names.data(),
                             c_feature_names.size());
  bst_ulong out_len = 0;
  char const **c_out_features;
  XGDMatrixGetStrFeatureInfo(handle, u8"feature_name", &out_len,
                             &c_out_features);

  CHECK_EQ(out_len, kCols);
  std::vector<std::string> out_features;
  for (bst_ulong i = 0; i < out_len; ++i) {
    ASSERT_EQ(std::to_string(i), c_out_features[i]);
  }

  std::array<char const *, 2> feat_types{"i", "q"};
  static_assert(sizeof(feat_types) / sizeof(feat_types[0]) == kCols);
  XGDMatrixSetStrFeatureInfo(handle, "feature_type", feat_types.data(), kCols);
  char const **c_out_types;
  XGDMatrixGetStrFeatureInfo(handle, u8"feature_type", &out_len,
                             &c_out_types);
  for (bst_ulong i = 0; i < out_len; ++i) {
    ASSERT_STREQ(feat_types[i], c_out_types[i]);
  }

  XGDMatrixFree(handle);
}

int TestExceptionCatching() {
  API_BEGIN();
  throw std::bad_alloc();
  API_END();
}

TEST(CAPI, Exception) {
  ASSERT_NO_THROW({TestExceptionCatching();});
  ASSERT_EQ(TestExceptionCatching(), -1);
  auto error = XGBGetLastError();
  // Not null
  ASSERT_TRUE(error);
}

TEST(CAPI, XGBGlobalConfig) {
  int ret;
  {
    const char *config_str = R"json(
    {
      "verbosity": 0,
      "use_rmm": false
    }
  )json";
    ret = XGBSetGlobalConfig(config_str);
    ASSERT_EQ(ret, 0);
    const char *updated_config_cstr;
    ret = XGBGetGlobalConfig(&updated_config_cstr);
    ASSERT_EQ(ret, 0);

    std::string updated_config_str{updated_config_cstr};
    auto updated_config =
        Json::Load({updated_config_str.data(), updated_config_str.size()});
    ASSERT_EQ(get<Integer>(updated_config["verbosity"]), 0);
    ASSERT_EQ(get<Boolean>(updated_config["use_rmm"]), false);
  }
  {
    const char *config_str = R"json(
    {
      "use_rmm": true
    }
  )json";
    ret = XGBSetGlobalConfig(config_str);
    ASSERT_EQ(ret, 0);
    const char *updated_config_cstr;
    ret = XGBGetGlobalConfig(&updated_config_cstr);
    ASSERT_EQ(ret, 0);

    std::string updated_config_str{updated_config_cstr};
    auto updated_config =
        Json::Load({updated_config_str.data(), updated_config_str.size()});
    ASSERT_EQ(get<Boolean>(updated_config["use_rmm"]), true);
  }
  {
    const char *config_str = R"json(
    {
      "foo": 0
    }
  )json";
    ret = XGBSetGlobalConfig(config_str);
    ASSERT_EQ(ret , -1);
    auto err = std::string{XGBGetLastError()};
    ASSERT_NE(err.find("foo"), std::string::npos);
  }
  {
    const char *config_str = R"json(
    {
      "foo": 0,
      "verbosity": 0
    }
  )json";
    ret = XGBSetGlobalConfig(config_str);
    ASSERT_EQ(ret , -1);
    auto err = std::string{XGBGetLastError()};
    ASSERT_NE(err.find("foo"), std::string::npos);
    ASSERT_EQ(err.find("verbosity"), std::string::npos);
  }
}

TEST(CAPI, BuildInfo) {
  char const* out;
  XGBuildInfo(&out);
  auto loaded = Json::Load(StringView{out});
  ASSERT_TRUE(get<Object const>(loaded).find("USE_OPENMP") != get<Object const>(loaded).cend());
  ASSERT_TRUE(get<Object const>(loaded).find("USE_CUDA") != get<Object const>(loaded).cend());
  ASSERT_TRUE(get<Object const>(loaded).find("USE_NCCL") != get<Object const>(loaded).cend());
}

TEST(CAPI, NullPtr) {
  ASSERT_EQ(XGBSetGlobalConfig(nullptr), -1);
  auto const *err = XGBGetLastError();
  auto pos = std::string{err}.find("Invalid pointer argument: json_str");
  ASSERT_NE(pos, std::string::npos);
  XGBAPISetLastError("");
}

TEST(CAPI, JArgs) {
  {
    Json args{Object{}};
    args["key"] = String{"value"};
    args["null"] = Null{};
    auto value = OptionalArg<String>(args, "key", std::string{"foo"});
    ASSERT_EQ(value, "value");
    value = OptionalArg<String const>(args, "key", std::string{"foo"});
    ASSERT_EQ(value, "value");

    ASSERT_THROW({ OptionalArg<Number>(args, "key", 0.0f); }, dmlc::Error);
    value = OptionalArg<String const>(args, "bar", std::string{"foo"});
    ASSERT_EQ(value, "foo");
    value = OptionalArg<String const>(args, "null", std::string{"foo"});
    ASSERT_EQ(value, "foo");
  }

  {
    Json args{Object{}};
    args["key"] = String{"value"};
    args["null"] = Null{};
    auto value = RequiredArg<String>(args, "key", __func__);
    ASSERT_EQ(value, "value");
    value = RequiredArg<String const>(args, "key", __func__);
    ASSERT_EQ(value, "value");

    ASSERT_THROW({ RequiredArg<Integer>(args, "key", __func__); }, dmlc::Error);
    ASSERT_THROW({ RequiredArg<String const>(args, "foo", __func__); }, dmlc::Error);
    ASSERT_THROW({ RequiredArg<String>(args, "null", __func__); }, dmlc::Error);
  }
}

namespace {
void MakeLabelForTest(std::shared_ptr<DMatrix> Xy, DMatrixHandle cxy) {
  auto n_samples = Xy->Info().num_row_;
  std::vector<float> y(n_samples);
  for (std::size_t i = 0; i < y.size(); ++i) {
    y[i] = static_cast<float>(i);
  }

  Xy->Info().labels.Reshape(n_samples);
  Xy->Info().labels.Data()->HostVector() = y;

  auto y_int = GetArrayInterface(Xy->Info().labels.Data(), n_samples, 1);
  std::string s_y_int;
  Json::Dump(y_int, &s_y_int);

  XGDMatrixSetInfoFromInterface(cxy, "label", s_y_int.c_str());
}

auto MakeSimpleDMatrixForTest(bst_idx_t n_samples, bst_feature_t n_features, Json dconfig) {
  HostDeviceVector<float> storage;
  auto arr_int = RandomDataGenerator{n_samples, n_features, 0.5f}.GenerateArrayInterface(&storage);

  data::ArrayAdapter adapter{StringView{arr_int}};
  std::shared_ptr<DMatrix> Xy{
      DMatrix::Create(&adapter, std::numeric_limits<float>::quiet_NaN(), Context{}.Threads())};

  DMatrixHandle p_fmat;
  std::string s_dconfig;
  Json::Dump(dconfig, &s_dconfig);
  CHECK_EQ(XGDMatrixCreateFromDense(arr_int.c_str(), s_dconfig.c_str(), &p_fmat), 0);

  MakeLabelForTest(Xy, p_fmat);
  return std::pair{p_fmat, Xy};
}

auto MakeQDMForTest(Context const *ctx, bst_idx_t n_samples, bst_feature_t n_features,
                    Json dconfig) {
  bst_bin_t n_bins{16};
  dconfig["max_bin"] = Integer{n_bins};

  std::size_t n_batches{4};
  std::unique_ptr<ArrayIterForTest> iter_0;
  if (ctx->IsCUDA()) {
    iter_0 = std::make_unique<CudaArrayIterForTest>(0.0f, n_samples, n_features, n_batches);
  } else {
    iter_0 = std::make_unique<NumpyArrayIterForTest>(0.0f, n_samples, n_features, n_batches);
  }
  std::string s_dconfig;
  Json::Dump(dconfig, &s_dconfig);
  DMatrixHandle p_fmat;
  CHECK_EQ(XGQuantileDMatrixCreateFromCallback(static_cast<DataIterHandle>(iter_0.get()),
                                               iter_0->Proxy(), nullptr, Reset, Next,
                                               s_dconfig.c_str(), &p_fmat),
           0);

  std::unique_ptr<ArrayIterForTest> iter_1;
  if (ctx->IsCUDA()) {
    iter_1 = std::make_unique<CudaArrayIterForTest>(0.0f, n_samples, n_features, n_batches);
  } else {
    iter_1 = std::make_unique<NumpyArrayIterForTest>(0.0f, n_samples, n_features, n_batches);
  }
  auto Xy = std::make_shared<data::IterativeDMatrix>(
      iter_1.get(), iter_1->Proxy(), nullptr, Reset, Next, std::numeric_limits<float>::quiet_NaN(),
      0, n_bins, std::numeric_limits<std::int64_t>::max());
  return std::pair{p_fmat, Xy};
}

auto MakeExtMemForTest(bst_idx_t n_samples, bst_feature_t n_features, Json dconfig) {
  std::size_t n_batches{4};
  NumpyArrayIterForTest iter_0{0.0f, n_samples, n_features, n_batches};
  std::string s_dconfig;
  dconfig["cache_prefix"] = String{"cache"};
  Json::Dump(dconfig, &s_dconfig);
  DMatrixHandle p_fmat;
  CHECK_EQ(XGDMatrixCreateFromCallback(static_cast<DataIterHandle>(&iter_0), iter_0.Proxy(), Reset,
                                       Next, s_dconfig.c_str(), &p_fmat),
           0);

  NumpyArrayIterForTest iter_1{0.0f, n_samples, n_features, n_batches};
  auto config = ExtMemConfig{"",
                             false,
                             cuda_impl::MatchingPageBytes(),
                             std::numeric_limits<float>::quiet_NaN(),
                             cuda_impl::MaxNumDevicePages(),
                             0};
  auto Xy = std::make_shared<data::SparsePageDMatrix>(&iter_1, iter_1.Proxy(), Reset, Next, config);
  MakeLabelForTest(Xy, p_fmat);
  return std::pair{p_fmat, Xy};
}

template <typename Page>
void CheckResult(Context const *ctx, bst_feature_t n_features, std::shared_ptr<DMatrix> Xy,
                 float const *out_data, std::uint64_t const *out_indptr) {
  for (auto const &page : Xy->GetBatches<Page>(ctx, BatchParam{16, 0.2})) {
    auto const &cut = page.Cuts();
    auto const &ptrs = cut.Ptrs();
    auto const &vals = cut.Values();
    auto const &mins = cut.MinValues();
    for (bst_feature_t f = 0; f < Xy->Info().num_col_; ++f) {
      ASSERT_EQ(ptrs[f] + f, out_indptr[f]);
      ASSERT_EQ(mins[f], out_data[out_indptr[f]]);
      auto beg = out_indptr[f];
      auto end = out_indptr[f + 1];
      auto val_beg = ptrs[f];
      for (std::uint64_t i = beg + 1, j = val_beg; i < end; ++i, ++j) {
        ASSERT_EQ(vals[j], out_data[i]);
      }
    }

    ASSERT_EQ(ptrs[n_features] + n_features, out_indptr[n_features]);
  }
}

void TestXGDMatrixGetQuantileCut(Context const *ctx) {
  bst_idx_t n_samples{1024};
  bst_feature_t n_features{16};

  Json dconfig{Object{}};
  dconfig["ntread"] = Integer{Context{}.Threads()};
  dconfig["missing"] = Number{std::numeric_limits<float>::quiet_NaN()};

  auto check_result = [n_features, &ctx](std::shared_ptr<DMatrix> Xy, StringView s_out_data,
                                         StringView s_out_indptr) {
    auto i_out_data = ArrayInterface<1, false>{s_out_data};
    ASSERT_EQ(i_out_data.type, ArrayInterfaceHandler::kF4);
    auto out_data = static_cast<float const *>(i_out_data.data);
    ASSERT_TRUE(out_data);

    auto i_out_indptr = ArrayInterface<1, false>{s_out_indptr};
    ASSERT_EQ(i_out_indptr.type, ArrayInterfaceHandler::kU8);
    auto out_indptr = static_cast<std::uint64_t const *>(i_out_indptr.data);
    ASSERT_TRUE(out_data);

    if (ctx->IsCPU()) {
      CheckResult<GHistIndexMatrix>(ctx, n_features, Xy, out_data, out_indptr);
    } else {
      CheckResult<EllpackPage>(ctx, n_features, Xy, out_data, out_indptr);
    }
  };

  Json config{Null{}};
  std::string s_config;
  Json::Dump(config, &s_config);
  char const *out_indptr;
  char const *out_data;

  {
    // SimpleDMatrix
    auto [p_fmat, Xy] = MakeSimpleDMatrixForTest(n_samples, n_features, dconfig);
    // assert fail, we don't have the quantile yet.
    ASSERT_EQ(XGDMatrixGetQuantileCut(p_fmat, s_config.c_str(), &out_indptr, &out_data), -1);

    std::array<DMatrixHandle, 1> mats{p_fmat};
    BoosterHandle booster;
    ASSERT_EQ(XGBoosterCreate(mats.data(), 1, &booster), 0);
    ASSERT_EQ(XGBoosterSetParam(booster, "max_bin", "16"), 0);
    if (ctx->IsCUDA()) {
      ASSERT_EQ(XGBoosterSetParam(booster, "device", ctx->DeviceName().c_str()), 0);
    }
    ASSERT_EQ(XGBoosterUpdateOneIter(booster, 0, p_fmat), 0);
    ASSERT_EQ(XGDMatrixGetQuantileCut(p_fmat, s_config.c_str(), &out_indptr, &out_data), 0);

    check_result(Xy, out_data, out_indptr);

    XGDMatrixFree(p_fmat);
    XGBoosterFree(booster);
  }

  {
    // IterativeDMatrix
    auto [p_fmat, Xy] = MakeQDMForTest(ctx, n_samples, n_features, dconfig);
    ASSERT_EQ(XGDMatrixGetQuantileCut(p_fmat, s_config.c_str(), &out_indptr, &out_data), 0);

    check_result(Xy, out_data, out_indptr);
    XGDMatrixFree(p_fmat);
  }

  {
    // SparsePageDMatrix
    auto [p_fmat, Xy] = MakeExtMemForTest(n_samples, n_features, dconfig);
    // assert fail, we don't have the quantile yet.
    ASSERT_EQ(XGDMatrixGetQuantileCut(p_fmat, s_config.c_str(), &out_indptr, &out_data), -1);

    std::array<DMatrixHandle, 1> mats{p_fmat};
    BoosterHandle booster;
    ASSERT_EQ(XGBoosterCreate(mats.data(), 1, &booster), 0);
    ASSERT_EQ(XGBoosterSetParam(booster, "max_bin", "16"), 0);
    if (ctx->IsCUDA()) {
      ASSERT_EQ(XGBoosterSetParam(booster, "device", ctx->DeviceName().c_str()), 0);
    }
    ASSERT_EQ(XGBoosterUpdateOneIter(booster, 0, p_fmat), 0);
    ASSERT_EQ(XGDMatrixGetQuantileCut(p_fmat, s_config.c_str(), &out_indptr, &out_data), 0);

    XGDMatrixFree(p_fmat);
    XGBoosterFree(booster);
  }
}
}  // namespace

TEST(CAPI, XGDMatrixGetQuantileCut) {
  Context ctx;
  TestXGDMatrixGetQuantileCut(&ctx);
}

#if defined(XGBOOST_USE_CUDA)
TEST(CAPI, GPUXGDMatrixGetQuantileCut) {
  auto ctx = MakeCUDACtx(0);
  TestXGDMatrixGetQuantileCut(&ctx);
}
#endif  // defined(XGBOOST_USE_CUDA)

TEST(CAPI, PredictReuseProxy) {
  // Configuration for creating DMatrix
  Json fmat_cfg{Object{}};
  fmat_cfg["missing"] = std::numeric_limits<float>::quiet_NaN();
  auto sfmat_cfg = Json::Dump(fmat_cfg);

  // Configuration for prediction
  Json config{Object{}};
  config["type"] = Integer{0};
  config["iteration_begin"] = config["iteration_end"] = Integer{0};
  config["missing"] = Number{std::numeric_limits<float>::quiet_NaN()};
  config["strict_shape"] = Boolean{true};
  config["training"] = Boolean{false};
  auto scfg = Json::Dump(config);

  HostDeviceVector<float> storage;
  bst_idx_t n_samples = 1024;
  auto inf = RandomDataGenerator{n_samples, 256, 0.0}.GenerateArrayInterface(&storage);
  HostDeviceVector<float> storage_y;
  auto y_inf = RandomDataGenerator{n_samples, 1, 0.0}.GenerateArrayInterface(&storage_y);

  // Create a DMatrix for training
  DMatrixHandle fmat_hdl{nullptr};
  ASSERT_EQ(XGDMatrixCreateFromDense(inf.c_str(), sfmat_cfg.c_str(), &fmat_hdl), 0);
  ASSERT_EQ(XGDMatrixSetInfoFromInterface(fmat_hdl, "label", y_inf.c_str()), 0);

  // Create booster and train.
  std::array<DMatrixHandle, 1> mats{fmat_hdl};
  BoosterHandle booster_hdl;
  ASSERT_EQ(XGBoosterCreate(mats.data(), 1, &booster_hdl), 0);

  for (std::int32_t i = 0; i < 3; ++i) {
    ASSERT_EQ(XGBoosterUpdateOneIter(booster_hdl, i, fmat_hdl), 0);
  }

  // Create a proxy that can be reused.
  DMatrixHandle proxy_hdl{nullptr};
  ASSERT_EQ(XGProxyDMatrixCreate(&proxy_hdl), 0);

  bst_ulong const *outshape{nullptr};
  bst_ulong outdim{0};
  float const *result{nullptr};

  {
    // Prediction with DMatrix
    ASSERT_EQ(XGBoosterPredictFromDMatrix(booster_hdl, fmat_hdl, scfg.c_str(), &outshape, &outdim,
                                          &result),
              0);
    bst_ulong n_samples_ret = 0;
    ASSERT_EQ(XGDMatrixNumRow(fmat_hdl, &n_samples_ret), 0);
    std::vector<float> vec_0(n_samples_ret);
    ASSERT_EQ(vec_0.size(), n_samples);
    ASSERT_EQ(outdim, 2);
    std::copy_n(result, vec_0.size(), vec_0.begin());

    // In-place predict
    ASSERT_EQ(XGBoosterPredictFromDense(booster_hdl, inf.c_str(), scfg.c_str(), proxy_hdl,
                                        &outshape, &outdim, &result),
              0);
    ASSERT_EQ(XGDMatrixNumRow(proxy_hdl, &n_samples_ret), 0);
    std::vector<float> vec_1(n_samples_ret);
    ASSERT_EQ(vec_1.size(), n_samples);
    ASSERT_EQ(outdim, 2);
    std::copy_n(result, vec_1.size(), vec_1.begin());

    // Same result
    ASSERT_EQ(vec_0, vec_1);
  }

  {
    bst_idx_t n_samples = 512;

    // Prediction with DMatrix
    auto inf = RandomDataGenerator{n_samples, 256, 0.0}.GenerateArrayInterface(&storage);
    DMatrixHandle fmat_hdl{nullptr};
    ASSERT_EQ(XGDMatrixCreateFromDense(inf.c_str(), sfmat_cfg.c_str(), &fmat_hdl), 0);

    ASSERT_EQ(XGBoosterPredictFromDMatrix(booster_hdl, fmat_hdl, scfg.c_str(), &outshape, &outdim,
                                          &result),
              0);
    bst_ulong n_samples_ret = 0;
    ASSERT_EQ(XGDMatrixNumRow(fmat_hdl, &n_samples_ret), 0);
    std::vector<float> vec_0(n_samples_ret);
    ASSERT_EQ(vec_0.size(), n_samples);
    ASSERT_EQ(outdim, 2);
    std::copy_n(result, vec_0.size(), vec_0.begin());

    // In-place predict, same proxy as before
    ASSERT_EQ(XGBoosterPredictFromDense(booster_hdl, inf.c_str(), scfg.c_str(), proxy_hdl,
                                        &outshape, &outdim, &result),
              0);
    ASSERT_EQ(XGDMatrixNumRow(proxy_hdl, &n_samples_ret), 0);
    std::vector<float> vec_1(n_samples_ret);
    ASSERT_EQ(vec_1.size(), n_samples);
    ASSERT_EQ(outdim, 2);
    std::copy_n(result, vec_1.size(), vec_1.begin());

    // Same result
    ASSERT_EQ(vec_0, vec_1);

    ASSERT_EQ(XGDMatrixFree(fmat_hdl), 0);
  }

  ASSERT_EQ(XGDMatrixFree(fmat_hdl), 0);
  ASSERT_EQ(XGBoosterFree(booster_hdl), 0);
  ASSERT_EQ(XGDMatrixFree(proxy_hdl), 0);
}
}  // namespace xgboost