1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
|
/**
* Copyright 2019-2023, XGBoost contributors
*/
#include <gtest/gtest.h>
#include "../../../src/common/bitfield.h"
namespace xgboost {
TEST(BitField, Check) {
{
std::vector<LBitField64::value_type> storage(4, 0);
storage[2] = 2;
auto bits = LBitField64({storage.data(),
static_cast<typename common::Span<LBitField64::value_type>::index_type>(
storage.size())});
size_t true_bit = 190;
for (size_t i = true_bit + 1; i < bits.Capacity(); ++i) {
ASSERT_FALSE(bits.Check(i));
}
ASSERT_TRUE(bits.Check(true_bit));
for (size_t i = 0; i < true_bit; ++i) {
ASSERT_FALSE(bits.Check(i));
}
}
{
std::vector<RBitField8::value_type> storage(4, 0);
storage[2] = 1 << 3;
auto bits = RBitField8({storage.data(),
static_cast<typename common::Span<RBitField8::value_type>::index_type>(
storage.size())});
size_t true_bit = 19;
for (size_t i = 0; i < true_bit; ++i) {
ASSERT_FALSE(bits.Check(i));
}
ASSERT_TRUE(bits.Check(true_bit));
for (size_t i = true_bit + 1; i < bits.Capacity(); ++i) {
ASSERT_FALSE(bits.Check(i));
}
}
{
// regression test for correct index type.
std::vector<RBitField8::value_type> storage(33, 0);
storage[32] = static_cast<uint8_t>(1);
auto bits = RBitField8({storage.data(), storage.size()});
ASSERT_TRUE(bits.Check(256));
}
}
template <typename BitFieldT, typename VT = typename BitFieldT::value_type>
void TestBitFieldSet(typename BitFieldT::value_type res, size_t index, size_t true_bit) {
using IndexT = typename common::Span<VT>::index_type;
std::vector<VT> storage(4, 0);
auto bits = BitFieldT({storage.data(), static_cast<IndexT>(storage.size())});
bits.Set(true_bit);
for (size_t i = 0; i < true_bit; ++i) {
ASSERT_FALSE(bits.Check(i));
}
ASSERT_TRUE(bits.Check(true_bit));
for (size_t i = true_bit + 1; i < storage.size() * BitFieldT::kValueSize; ++i) {
ASSERT_FALSE(bits.Check(i));
}
ASSERT_EQ(storage[index], res);
}
TEST(BitField, Set) {
{
TestBitFieldSet<LBitField64>(2, 2, 190);
}
{
TestBitFieldSet<RBitField8>(1 << 3, 2, 19);
}
}
template <typename BitFieldT, typename VT = typename BitFieldT::value_type>
void TestBitFieldClear(size_t clear_bit) {
using IndexT = typename common::Span<VT>::index_type;
std::vector<VT> storage(4, 0);
auto bits = BitFieldT({storage.data(), static_cast<IndexT>(storage.size())});
bits.Set(clear_bit);
bits.Clear(clear_bit);
ASSERT_FALSE(bits.Check(clear_bit));
}
TEST(BitField, Clear) {
{
TestBitFieldClear<LBitField64>(190);
}
{
TestBitFieldClear<RBitField8>(19);
}
}
TEST(BitField, CTZ) {
{
auto cnt = TrailingZeroBits(0);
ASSERT_EQ(cnt, sizeof(std::uint32_t) * 8);
}
{
auto cnt = TrailingZeroBits(0b00011100);
ASSERT_EQ(cnt, 2);
cnt = detail::TrailingZeroBitsImpl(0b00011100);
ASSERT_EQ(cnt, 2);
}
{
auto cnt = TrailingZeroBits(0b00011101);
ASSERT_EQ(cnt, 0);
cnt = detail::TrailingZeroBitsImpl(0b00011101);
ASSERT_EQ(cnt, 0);
}
{
auto cnt = TrailingZeroBits(0b1000000000000000);
ASSERT_EQ(cnt, 15);
cnt = detail::TrailingZeroBitsImpl(0b1000000000000000);
ASSERT_EQ(cnt, 15);
}
}
} // namespace xgboost
|