1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
|
/*!
* Copyright 2021-2022 by XGBoost Contributors
*/
#include <gtest/gtest.h>
#include <xgboost/json.h>
#include <xgboost/learner.h>
#include <limits>
#include "../../../src/common/categorical.h"
#include "../helpers.h"
namespace xgboost {
namespace common {
TEST(Categorical, Decision) {
// inf
float a = std::numeric_limits<float>::infinity();
ASSERT_TRUE(common::InvalidCat(a));
std::vector<uint32_t> cats(256, 0);
ASSERT_TRUE(Decision(cats, a));
// larger than size
a = 256;
ASSERT_TRUE(Decision(cats, a));
// negative
a = -1;
ASSERT_TRUE(Decision(cats, a));
CatBitField bits{cats};
bits.Set(0);
a = -0.5;
ASSERT_TRUE(Decision(cats, a));
// round toward 0
a = 0.5;
ASSERT_FALSE(Decision(cats, a));
// valid
a = 13;
bits.Set(a);
ASSERT_FALSE(Decision(bits.Bits(), a));
}
/**
* Test for running inference with input category greater than the one stored in tree.
*/
TEST(Categorical, MinimalSet) {
std::size_t constexpr kRows = 256, kCols = 1, kCat = 3;
std::vector<FeatureType> types{FeatureType::kCategorical};
auto Xy =
RandomDataGenerator{kRows, kCols, 0.0}.Type(types).MaxCategory(kCat).GenerateDMatrix(true);
std::unique_ptr<Learner> learner{Learner::Create({Xy})};
learner->SetParam("max_depth", "1");
learner->SetParam("tree_method", "hist");
learner->Configure();
learner->UpdateOneIter(0, Xy);
Json model{Object{}};
learner->SaveModel(&model);
auto tree = model["learner"]["gradient_booster"]["model"]["trees"][0];
ASSERT_GE(get<I32Array const>(tree["categories"]).size(), 1);
auto v = get<I32Array const>(tree["categories"])[0];
HostDeviceVector<float> predt;
{
std::vector<float> data{static_cast<float>(kCat),
static_cast<float>(kCat + 1), 32.0f, 33.0f, 34.0f};
auto test = GetDMatrixFromData(data, data.size(), kCols);
learner->Predict(test, false, &predt, 0, 0, false, /*pred_leaf=*/true);
ASSERT_EQ(predt.Size(), data.size());
auto const& h_predt = predt.ConstHostSpan();
for (auto v : h_predt) {
ASSERT_EQ(v, 1); // left child of root node
}
}
{
std::unique_ptr<Learner> learner{Learner::Create({Xy})};
learner->LoadModel(model);
std::vector<float> data = {static_cast<float>(v)};
auto test = GetDMatrixFromData(data, data.size(), kCols);
learner->Predict(test, false, &predt, 0, 0, false, /*pred_leaf=*/true);
auto const& h_predt = predt.ConstHostSpan();
for (auto v : h_predt) {
ASSERT_EQ(v, 2); // right child of root node
}
}
}
} // namespace common
} // namespace xgboost
|