File: test_column_matrix.cc

package info (click to toggle)
xgboost 3.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 13,796 kB
  • sloc: cpp: 67,502; python: 35,503; java: 4,676; ansic: 1,426; sh: 1,320; xml: 1,197; makefile: 204; javascript: 19
file content (149 lines) | stat: -rw-r--r-- 6,373 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
/**
 * Copyright 2018-2023 by XGBoost Contributors
 */
#include <gtest/gtest.h>
#include <xgboost/base.h>     // for bst_bin_t
#include <xgboost/context.h>  // for Context
#include <xgboost/data.h>     // for BatchIterator, BatchSet, DMatrix, Met...

#include <cstddef>      // for size_t
#include <cstdint>      // for int32_t, uint16_t, uint8_t
#include <limits>       // for numeric_limits
#include <memory>       // for shared_ptr, __shared_ptr_access, allo...
#include <type_traits>  // for remove_reference_t

#include "../../../src/common/column_matrix.h"      // for ColumnMatrix, Column, DenseColumnIter
#include "../../../src/common/hist_util.h"          // for DispatchBinType, BinTypeSize, Index
#include "../../../src/common/ref_resource_view.h"  // for RefResourceView
#include "../../../src/data/gradient_index.h"       // for GHistIndexMatrix
#include "../../../src/data/iterative_dmatrix.h"    // for IterativeDMatrix
#include "../../../src/tree/param.h"                // for TrainParam
#include "../helpers.h"                             // for RandomDataGenerator, NumpyArrayIterFo...

namespace xgboost::common {
TEST(ColumnMatrix, Basic) {
  int32_t max_num_bins[] = {static_cast<int32_t>(std::numeric_limits<uint8_t>::max()) + 1,
                            static_cast<int32_t>(std::numeric_limits<uint16_t>::max()) + 1,
                            static_cast<int32_t>(std::numeric_limits<uint16_t>::max()) + 2};
  Context ctx;
  BinTypeSize last{kUint8BinsTypeSize};
  for (int32_t max_num_bin : max_num_bins) {
    auto dmat = RandomDataGenerator(100, 10, 0.0).GenerateDMatrix();
    auto sparse_thresh = 0.2;
    GHistIndexMatrix gmat{&ctx, dmat.get(), max_num_bin, sparse_thresh, false};
    ColumnMatrix column_matrix;
    for (auto const& page : dmat->GetBatches<SparsePage>()) {
      column_matrix.InitFromSparse(page, gmat, sparse_thresh, ctx.Threads());
    }
    ASSERT_GE(column_matrix.GetTypeSize(), last);
    ASSERT_LE(column_matrix.GetTypeSize(), kUint32BinsTypeSize);
    last = column_matrix.GetTypeSize();
    ASSERT_FALSE(column_matrix.AnyMissing());
    for (auto i = 0ull; i < dmat->Info().num_row_; i++) {
      for (auto j = 0ull; j < dmat->Info().num_col_; j++) {
        DispatchBinType(column_matrix.GetTypeSize(), [&](auto dtype) {
          using T = decltype(dtype);
          auto col = column_matrix.DenseColumn<T, false>(j);
          ASSERT_EQ(gmat.index[i * dmat->Info().num_col_ + j], col.GetGlobalBinIdx(i));
        });
      }
    }
  }
}

template <typename BinIdxType>
void CheckSparseColumn(SparseColumnIter<BinIdxType>* p_col, const GHistIndexMatrix& gmat) {
  auto& col = *p_col;

  size_t n_samples = gmat.row_ptr.size() - 1;
  ASSERT_EQ(col.Size(), gmat.index.Size());
  for (auto i = 0ull; i < col.Size(); i++) {
    ASSERT_EQ(gmat.index[gmat.row_ptr[col.GetRowIdx(i)]], col.GetGlobalBinIdx(i));
  }

  for (auto i = 0ull; i < n_samples; i++) {
    if (col[i] == Column<BinIdxType>::kMissingId) {
      auto beg = gmat.row_ptr[i];
      auto end = gmat.row_ptr[i + 1];
      ASSERT_EQ(end - beg, 0);
    }
  }
}

TEST(ColumnMatrix, SparseColumn) {
  int32_t max_num_bins[] = {static_cast<int32_t>(std::numeric_limits<uint8_t>::max()) + 1,
                            static_cast<int32_t>(std::numeric_limits<uint16_t>::max()) + 1,
                            static_cast<int32_t>(std::numeric_limits<uint16_t>::max()) + 2};
  Context ctx;
  for (int32_t max_num_bin : max_num_bins) {
    auto dmat = RandomDataGenerator(100, 1, 0.85).GenerateDMatrix();
    GHistIndexMatrix gmat{&ctx, dmat.get(), max_num_bin, 0.5f, false};
    ColumnMatrix column_matrix;
    for (auto const& page : dmat->GetBatches<SparsePage>()) {
      column_matrix.InitFromSparse(page, gmat, 1.0, ctx.Threads());
    }
    common::DispatchBinType(column_matrix.GetTypeSize(), [&](auto dtype) {
      using T = decltype(dtype);
      auto col = column_matrix.SparseColumn<T>(0, 0);
      CheckSparseColumn(&col, gmat);
    });
  }
}

template <typename BinIdxType>
void CheckColumWithMissingValue(const DenseColumnIter<BinIdxType, true>& col,
                                const GHistIndexMatrix& gmat) {
  for (auto i = 0ull; i < col.Size(); i++) {
    if (col.IsMissing(i)) {
      continue;
    }
    EXPECT_EQ(gmat.index[gmat.row_ptr[i]], col.GetGlobalBinIdx(i));
  }
}

TEST(ColumnMatrix, DenseColumnWithMissing) {
  int32_t max_num_bins[] = {static_cast<int32_t>(std::numeric_limits<uint8_t>::max()) + 1,
                            static_cast<int32_t>(std::numeric_limits<uint16_t>::max()) + 1,
                            static_cast<int32_t>(std::numeric_limits<uint16_t>::max()) + 2};
  Context ctx;
  for (int32_t max_num_bin : max_num_bins) {
    auto dmat = RandomDataGenerator(100, 1, 0.5).GenerateDMatrix();
    GHistIndexMatrix gmat(&ctx, dmat.get(), max_num_bin, 0.2, false);
    ColumnMatrix column_matrix;
    for (auto const& page : dmat->GetBatches<SparsePage>()) {
      column_matrix.InitFromSparse(page, gmat, 0.2, ctx.Threads());
    }
    ASSERT_TRUE(column_matrix.AnyMissing());
    DispatchBinType(column_matrix.GetTypeSize(), [&](auto dtype) {
      using T = decltype(dtype);
      auto col = column_matrix.DenseColumn<T, true>(0);
      CheckColumWithMissingValue(col, gmat);
    });
  }
}

TEST(ColumnMatrix, GrowMissing) {
  float sparsity = 0.5;
  NumpyArrayIterForTest iter(sparsity);
  auto n_threads = 0;
  bst_bin_t n_bins = 16;
  BatchParam batch{n_bins, tree::TrainParam::DftSparseThreshold()};
  Context ctx;
  auto m = std::make_shared<data::IterativeDMatrix>(
      &iter, iter.Proxy(), nullptr, Reset, Next, std::numeric_limits<float>::quiet_NaN(), n_threads,
      n_bins, std::numeric_limits<std::int64_t>::max());
  for (auto const& page : m->GetBatches<GHistIndexMatrix>(&ctx, batch)) {
    auto const& column_matrix = page.Transpose();
    auto const& missing = column_matrix.Missing();
    auto n = NumpyArrayIterForTest::Rows() * NumpyArrayIterForTest::Cols();
    auto expected = std::remove_reference_t<decltype(missing)>::BitFieldT::ComputeStorageSize(n);
    auto got = missing.storage.size();
    ASSERT_EQ(expected, got);
    DispatchBinType(column_matrix.GetTypeSize(), [&](auto dtype) {
      using T = decltype(dtype);
      auto col = column_matrix.DenseColumn<T, true>(0);
      CheckColumWithMissingValue(col, page);
    });
  }
}
}  // namespace xgboost::common