1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
|
/**
* Copyright 2018-2024, XGBoost contributors
*/
#include <gtest/gtest.h>
#include <thrust/equal.h>
#include <thrust/iterator/counting_iterator.h>
#include <xgboost/host_device_vector.h>
#include "../../../src/common/cuda_rt_utils.h" // for SetDevice
#include "../../../src/common/device_helpers.cuh"
namespace xgboost::common {
namespace {
void SetDeviceForTest(DeviceOrd device) {
int n_devices;
dh::safe_cuda(cudaGetDeviceCount(&n_devices));
device.ordinal %= n_devices;
dh::safe_cuda(cudaSetDevice(device.ordinal));
}
} // namespace
struct HostDeviceVectorSetDeviceHandler {
template <typename Functor>
explicit HostDeviceVectorSetDeviceHandler(Functor f) {
SetCudaSetDeviceHandler(f);
}
~HostDeviceVectorSetDeviceHandler() {
SetCudaSetDeviceHandler(nullptr);
}
};
void InitHostDeviceVector(size_t n, DeviceOrd device, HostDeviceVector<int> *v) {
// create the vector
v->SetDevice(device);
v->Resize(n);
ASSERT_EQ(v->Size(), n);
ASSERT_EQ(v->Device(), device);
// ensure that the device have read-write access
ASSERT_TRUE(v->DeviceCanRead());
ASSERT_TRUE(v->DeviceCanWrite());
// ensure that the host has no access
ASSERT_FALSE(v->HostCanRead());
ASSERT_FALSE(v->HostCanWrite());
// fill in the data on the host
std::vector<int>& data_h = v->HostVector();
// ensure that the host has full access, while the device have none
ASSERT_TRUE(v->HostCanRead());
ASSERT_TRUE(v->HostCanWrite());
ASSERT_FALSE(v->DeviceCanRead());
ASSERT_FALSE(v->DeviceCanWrite());
ASSERT_EQ(data_h.size(), n);
std::copy_n(thrust::make_counting_iterator(0), n, data_h.begin());
}
void PlusOne(HostDeviceVector<int> *v) {
auto device = v->Device();
SetDeviceForTest(device);
thrust::transform(dh::tcbegin(*v), dh::tcend(*v), dh::tbegin(*v),
[=]__device__(unsigned int a){ return a + 1; });
ASSERT_TRUE(v->DeviceCanWrite());
}
void CheckDevice(HostDeviceVector<int>* v,
size_t size,
unsigned int first,
GPUAccess access) {
ASSERT_EQ(v->Size(), size);
SetDeviceForTest(v->Device());
ASSERT_TRUE(thrust::equal(dh::tcbegin(*v), dh::tcend(*v),
thrust::make_counting_iterator(first)));
ASSERT_TRUE(v->DeviceCanRead());
// ensure that the device has at most the access specified by access
ASSERT_EQ(v->DeviceCanWrite(), access == GPUAccess::kWrite);
ASSERT_EQ(v->HostCanRead(), access == GPUAccess::kRead);
ASSERT_FALSE(v->HostCanWrite());
ASSERT_TRUE(thrust::equal(dh::tbegin(*v), dh::tend(*v),
thrust::make_counting_iterator(first)));
ASSERT_TRUE(v->DeviceCanRead());
ASSERT_TRUE(v->DeviceCanWrite());
ASSERT_FALSE(v->HostCanRead());
ASSERT_FALSE(v->HostCanWrite());
}
void CheckHost(HostDeviceVector<int> *v, GPUAccess access) {
const std::vector<int>& data_h = access == GPUAccess::kNone ?
v->HostVector() : v->ConstHostVector();
for (size_t i = 0; i < v->Size(); ++i) {
ASSERT_EQ(data_h.at(i), i + 1);
}
ASSERT_TRUE(v->HostCanRead());
ASSERT_EQ(v->HostCanWrite(), access == GPUAccess::kNone);
ASSERT_EQ(v->DeviceCanRead(), access == GPUAccess::kRead);
// the devices should have no write access
ASSERT_FALSE(v->DeviceCanWrite());
}
void TestHostDeviceVector(size_t n, DeviceOrd device) {
HostDeviceVectorSetDeviceHandler hdvec_dev_hndlr(curt::SetDevice);
HostDeviceVector<int> v;
InitHostDeviceVector(n, device, &v);
CheckDevice(&v, n, 0, GPUAccess::kRead);
PlusOne(&v);
CheckDevice(&v, n, 1, GPUAccess::kWrite);
CheckHost(&v, GPUAccess::kRead);
CheckHost(&v, GPUAccess::kNone);
}
TEST(HostDeviceVector, Basic) {
size_t n = 1001;
DeviceOrd device = DeviceOrd::CUDA(0);
TestHostDeviceVector(n, device);
}
TEST(HostDeviceVector, Copy) {
size_t n = 1001;
auto device = DeviceOrd::CUDA(0);
HostDeviceVectorSetDeviceHandler hdvec_dev_hndlr(curt::SetDevice);
HostDeviceVector<int> v;
{
// a separate scope to ensure that v1 is gone before further checks
HostDeviceVector<int> v1;
InitHostDeviceVector(n, device, &v1);
v.Resize(v1.Size());
v.Copy(v1);
}
CheckDevice(&v, n, 0, GPUAccess::kRead);
PlusOne(&v);
CheckDevice(&v, n, 1, GPUAccess::kWrite);
CheckHost(&v, GPUAccess::kRead);
CheckHost(&v, GPUAccess::kNone);
}
TEST(HostDeviceVector, SetDevice) {
std::vector<int> h_vec (2345);
for (size_t i = 0; i < h_vec.size(); ++i) {
h_vec[i] = i;
}
HostDeviceVector<int> vec (h_vec);
auto device = DeviceOrd::CUDA(0);
vec.SetDevice(device);
ASSERT_EQ(vec.Size(), h_vec.size());
vec.DeviceSpan(); // sync to device
vec.SetDevice(DeviceOrd::CPU()); // pull back to cpu.
ASSERT_EQ(vec.Size(), h_vec.size());
ASSERT_EQ(vec.Device(), DeviceOrd::CPU());
auto h_vec_1 = vec.HostVector();
ASSERT_TRUE(std::equal(h_vec_1.cbegin(), h_vec_1.cend(), h_vec.cbegin()));
}
TEST(HostDeviceVector, Span) {
HostDeviceVector<float> vec {1.0f, 2.0f, 3.0f, 4.0f};
vec.SetDevice(DeviceOrd::CUDA(0));
auto span = vec.DeviceSpan();
ASSERT_EQ(vec.Size(), span.size());
ASSERT_EQ(vec.DevicePointer(), span.data());
auto const_span = vec.ConstDeviceSpan();
ASSERT_EQ(vec.Size(), const_span.size());
ASSERT_EQ(vec.ConstDevicePointer(), const_span.data());
auto h_span = vec.ConstHostSpan();
ASSERT_TRUE(vec.HostCanRead());
ASSERT_FALSE(vec.HostCanWrite());
ASSERT_EQ(h_span.size(), vec.Size());
ASSERT_EQ(h_span.data(), vec.ConstHostPointer());
h_span = vec.HostSpan();
ASSERT_TRUE(vec.HostCanWrite());
}
TEST(HostDeviceVector, Empty) {
HostDeviceVector<float> vec {1.0f, 2.0f, 3.0f, 4.0f};
HostDeviceVector<float> another { std::move(vec) };
ASSERT_FALSE(another.Empty());
ASSERT_TRUE(vec.Empty());
}
TEST(HostDeviceVector, Resize) {
auto check = [&](HostDeviceVector<float> const& vec) {
auto const& h_vec = vec.ConstHostSpan();
for (std::size_t i = 0; i < 4; ++i) {
ASSERT_EQ(h_vec[i], i + 1);
}
for (std::size_t i = 4; i < vec.Size(); ++i) {
ASSERT_EQ(h_vec[i], 3.0);
}
};
{
HostDeviceVector<float> vec{1.0f, 2.0f, 3.0f, 4.0f};
vec.SetDevice(DeviceOrd::CUDA(0));
vec.ConstDeviceSpan();
ASSERT_TRUE(vec.DeviceCanRead());
ASSERT_FALSE(vec.DeviceCanWrite());
vec.DeviceSpan();
vec.Resize(7, 3.0f);
ASSERT_TRUE(vec.DeviceCanWrite());
check(vec);
}
{
HostDeviceVector<float> vec{{1.0f, 2.0f, 3.0f, 4.0f}, DeviceOrd::CUDA(0)};
ASSERT_TRUE(vec.DeviceCanWrite());
vec.Resize(7, 3.0f);
ASSERT_TRUE(vec.DeviceCanWrite());
check(vec);
}
{
HostDeviceVector<float> vec{1.0f, 2.0f, 3.0f, 4.0f};
ASSERT_TRUE(vec.HostCanWrite());
vec.Resize(7, 3.0f);
ASSERT_TRUE(vec.HostCanWrite());
check(vec);
}
}
} // namespace xgboost::common
|