1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
/**
* Copyright 2018-2023, XGBoost Contributors
*/
#include "../../../src/common/random.h"
#include "../helpers.h"
#include "gtest/gtest.h"
#include "xgboost/context.h" // for Context
namespace xgboost::common {
namespace {
void TestBasic(Context const* ctx) {
int n = 128;
ColumnSampler cs{1u};
std::vector<float> feature_weights;
// No node sampling
cs.Init(ctx, n, feature_weights, 1.0f, 0.5f, 0.5f);
auto set0 = cs.GetFeatureSet(0);
ASSERT_EQ(set0->Size(), 32);
auto set1 = cs.GetFeatureSet(0);
ASSERT_EQ(set0->HostVector(), set1->HostVector());
auto set2 = cs.GetFeatureSet(1);
ASSERT_NE(set1->HostVector(), set2->HostVector());
ASSERT_EQ(set2->Size(), 32);
// Node sampling
cs.Init(ctx, n, feature_weights, 0.5f, 1.0f, 0.5f);
auto set3 = cs.GetFeatureSet(0);
ASSERT_EQ(set3->Size(), 32);
auto set4 = cs.GetFeatureSet(0);
ASSERT_NE(set3->HostVector(), set4->HostVector());
ASSERT_EQ(set4->Size(), 32);
// No level or node sampling, should be the same at different depth
cs.Init(ctx, n, feature_weights, 1.0f, 1.0f, 0.5f);
ASSERT_EQ(cs.GetFeatureSet(0)->HostVector(), cs.GetFeatureSet(1)->HostVector());
cs.Init(ctx, n, feature_weights, 1.0f, 1.0f, 1.0f);
auto set5 = cs.GetFeatureSet(0);
ASSERT_EQ(set5->Size(), n);
cs.Init(ctx, n, feature_weights, 1.0f, 1.0f, 1.0f);
auto set6 = cs.GetFeatureSet(0);
ASSERT_EQ(set5->HostVector(), set6->HostVector());
// Should always be a minimum of one feature
cs.Init(ctx, n, feature_weights, 1e-16f, 1e-16f, 1e-16f);
ASSERT_EQ(cs.GetFeatureSet(0)->Size(), 1);
}
} // namespace
TEST(ColumnSampler, Test) {
Context ctx;
TestBasic(&ctx);
}
#if defined(XGBOOST_USE_CUDA)
TEST(ColumnSampler, GPUTest) {
auto ctx = MakeCUDACtx(0);
TestBasic(&ctx);
}
#endif // defined(XGBOOST_USE_CUDA)
// Test if different threads using the same seed produce the same result
TEST(ColumnSampler, ThreadSynchronisation) {
Context ctx;
// NOLINTBEGIN(clang-analyzer-deadcode.DeadStores)
#if defined(__linux__)
std::int64_t const n_threads = std::thread::hardware_concurrency() * 128;
#else
std::int64_t const n_threads = std::thread::hardware_concurrency();
#endif
// NOLINTEND(clang-analyzer-deadcode.DeadStores)
int n = 128;
size_t iterations = 10;
size_t levels = 5;
std::vector<bst_feature_t> reference_result;
std::vector<float> feature_weights;
bool success = true; // Cannot use google test asserts in multithreaded region
#pragma omp parallel num_threads(n_threads)
{
for (auto j = 0ull; j < iterations; j++) {
ColumnSampler cs(j);
cs.Init(&ctx, n, feature_weights, 0.5f, 0.5f, 0.5f);
for (auto level = 0ull; level < levels; level++) {
auto result = cs.GetFeatureSet(level)->ConstHostVector();
#pragma omp single
{ reference_result = result; }
if (result != reference_result) {
success = false;
}
#pragma omp barrier
}
}
}
ASSERT_TRUE(success);
}
namespace {
void TestWeightedSampling(Context const* ctx) {
auto test_basic = [ctx](int first) {
std::vector<float> feature_weights(2);
feature_weights[0] = std::abs(first - 1.0f);
feature_weights[1] = first - 0.0f;
ColumnSampler cs{0};
cs.Init(ctx, 2, feature_weights, 1.0, 1.0, 0.5);
auto feature_sets = cs.GetFeatureSet(0);
auto const& h_feat_set = feature_sets->HostVector();
ASSERT_EQ(h_feat_set.size(), 1);
ASSERT_EQ(h_feat_set[0], first - 0);
};
test_basic(0);
test_basic(1);
size_t constexpr kCols = 64;
std::vector<float> feature_weights(kCols);
SimpleLCG rng;
SimpleRealUniformDistribution<float> dist(.0f, 12.0f);
std::generate(feature_weights.begin(), feature_weights.end(), [&]() { return dist(&rng); });
ColumnSampler cs{0};
cs.Init(ctx, kCols, feature_weights, 0.5f, 1.0f, 1.0f);
std::vector<bst_feature_t> features(kCols);
std::iota(features.begin(), features.end(), 0);
std::vector<float> freq(kCols, 0);
for (size_t i = 0; i < 1024; ++i) {
auto fset = cs.GetFeatureSet(0);
ASSERT_EQ(kCols * 0.5, fset->Size());
auto const& h_fset = fset->HostVector();
for (auto f : h_fset) {
freq[f] += 1.0f;
}
}
auto norm = std::accumulate(freq.cbegin(), freq.cend(), .0f);
for (auto& f : freq) {
f /= norm;
}
norm = std::accumulate(feature_weights.cbegin(), feature_weights.cend(), .0f);
for (auto& f : feature_weights) {
f /= norm;
}
for (size_t i = 0; i < feature_weights.size(); ++i) {
EXPECT_NEAR(freq[i], feature_weights[i], 1e-2);
}
}
} // namespace
TEST(ColumnSampler, WeightedSampling) {
Context ctx;
TestWeightedSampling(&ctx);
}
#if defined(XGBOOST_USE_CUDA)
TEST(ColumnSampler, GPUWeightedSampling) {
auto ctx = MakeCUDACtx(0);
TestWeightedSampling(&ctx);
}
#endif // defined(XGBOOST_USE_CUDA)
namespace {
void TestWeightedMultiSampling(Context const* ctx) {
size_t constexpr kCols = 32;
std::vector<float> feature_weights(kCols, 0);
for (size_t i = 0; i < feature_weights.size(); ++i) {
feature_weights[i] = i;
}
ColumnSampler cs{0};
float bytree{0.5}, bylevel{0.5}, bynode{0.5};
cs.Init(ctx, feature_weights.size(), feature_weights, bytree, bylevel, bynode);
auto feature_set = cs.GetFeatureSet(0);
size_t n_sampled = kCols * bytree * bylevel * bynode;
ASSERT_EQ(feature_set->Size(), n_sampled);
feature_set = cs.GetFeatureSet(1);
ASSERT_EQ(feature_set->Size(), n_sampled);
}
} // namespace
TEST(ColumnSampler, WeightedMultiSampling) {
Context ctx;
TestWeightedMultiSampling(&ctx);
}
#if defined(XGBOOST_USE_CUDA)
TEST(ColumnSampler, GPUWeightedMultiSampling) {
auto ctx = MakeCUDACtx(0);
TestWeightedMultiSampling(&ctx);
}
#endif // defined(XGBOOST_USE_CUDA)
} // namespace xgboost::common
|