1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
/**
* Copyright 2022-2023 by XGBoost Contributors
*/
#include <gtest/gtest.h>
#include <cstddef> // std::size_t
#include <utility> // std::pair
#include <vector> // std::vector
#include "../../../src/common/linalg_op.cuh" // ElementWiseTransformDevice
#include "../../../src/common/stats.cuh"
#include "../helpers.h"
#include "xgboost/base.h" // XGBOOST_DEVICE
#include "xgboost/context.h" // Context
#include "xgboost/host_device_vector.h" // HostDeviceVector
#include "xgboost/linalg.h" // Tensor
namespace xgboost {
namespace common {
namespace {
class StatsGPU : public ::testing::Test {
private:
linalg::Tensor<float, 1> arr_{{1.f, 2.f, 3.f, 4.f, 5.f, 2.f, 4.f, 5.f, 3.f, 1.f}, {10}, FstCU()};
linalg::Tensor<std::size_t, 1> indptr_{{0, 5, 10}, {3}, FstCU()};
HostDeviceVector<float> results_;
using TestSet = std::vector<std::pair<float, float>>;
Context ctx_;
void Check(float expected) {
auto const& h_results = results_.HostVector();
ASSERT_EQ(h_results.size(), indptr_.Size() - 1);
ASSERT_EQ(h_results.front(), expected);
ASSERT_EQ(h_results.back(), expected);
}
public:
void SetUp() override { ctx_ = MakeCUDACtx(0); }
void WeightedMulti() {
// data for one segment
std::vector<float> seg{1.f, 2.f, 3.f, 4.f, 5.f};
auto seg_size = seg.size();
// 3 segments
std::vector<float> data;
data.insert(data.cend(), seg.begin(), seg.end());
data.insert(data.cend(), seg.begin(), seg.end());
data.insert(data.cend(), seg.begin(), seg.end());
linalg::Tensor<float, 1> arr{data.cbegin(), data.cend(), {data.size()}, FstCU()};
auto d_arr = arr.View(DeviceOrd::CUDA(0));
auto key_it = dh::MakeTransformIterator<std::size_t>(
thrust::make_counting_iterator(0ul),
[=] XGBOOST_DEVICE(std::size_t i) { return i * seg_size; });
auto val_it =
dh::MakeTransformIterator<float>(thrust::make_counting_iterator(0ul),
[=] XGBOOST_DEVICE(std::size_t i) { return d_arr(i); });
// one alpha for each segment
HostDeviceVector<float> alphas{0.0f, 0.5f, 1.0f};
alphas.SetDevice(FstCU());
auto d_alphas = alphas.ConstDeviceSpan();
auto w_it = thrust::make_constant_iterator(0.1f);
SegmentedWeightedQuantile(&ctx_, d_alphas.data(), key_it, key_it + d_alphas.size() + 1, val_it,
val_it + d_arr.Size(), w_it, w_it + d_arr.Size(), &results_);
auto const& h_results = results_.HostVector();
ASSERT_EQ(1.0f, h_results[0]);
ASSERT_EQ(3.0f, h_results[1]);
ASSERT_EQ(5.0f, h_results[2]);
}
void Weighted() {
auto d_arr = arr_.View(DeviceOrd::CUDA(0));
auto d_key = indptr_.View(DeviceOrd::CUDA(0));
auto key_it = dh::MakeTransformIterator<std::size_t>(
thrust::make_counting_iterator(0ul),
[=] XGBOOST_DEVICE(std::size_t i) { return d_key(i); });
auto val_it =
dh::MakeTransformIterator<float>(thrust::make_counting_iterator(0ul),
[=] XGBOOST_DEVICE(std::size_t i) { return d_arr(i); });
linalg::Tensor<float, 1> weights{{10}, FstCU()};
linalg::ElementWiseTransformDevice(weights.View(DeviceOrd::CUDA(0)),
[=] XGBOOST_DEVICE(std::size_t, float) { return 1.0; });
auto w_it = weights.Data()->ConstDevicePointer();
for (auto const& pair : TestSet{{0.0f, 1.0f}, {0.5f, 3.0f}, {1.0f, 5.0f}}) {
SegmentedWeightedQuantile(&ctx_, pair.first, key_it, key_it + indptr_.Size(), val_it,
val_it + arr_.Size(), w_it, w_it + weights.Size(), &results_);
this->Check(pair.second);
}
}
void NonWeightedMulti() {
// data for one segment
std::vector<float> seg{20.f, 15.f, 50.f, 40.f, 35.f};
auto seg_size = seg.size();
// 3 segments
std::vector<float> data;
data.insert(data.cend(), seg.begin(), seg.end());
data.insert(data.cend(), seg.begin(), seg.end());
data.insert(data.cend(), seg.begin(), seg.end());
linalg::Tensor<float, 1> arr{data.cbegin(), data.cend(), {data.size()}, FstCU()};
auto d_arr = arr.View(DeviceOrd::CUDA(0));
auto key_it = dh::MakeTransformIterator<std::size_t>(
thrust::make_counting_iterator(0ul),
[=] XGBOOST_DEVICE(std::size_t i) { return i * seg_size; });
auto val_it =
dh::MakeTransformIterator<float>(thrust::make_counting_iterator(0ul),
[=] XGBOOST_DEVICE(std::size_t i) { return d_arr(i); });
// one alpha for each segment
HostDeviceVector<float> alphas{0.1f, 0.2f, 0.4f};
alphas.SetDevice(FstCU());
auto d_alphas = alphas.ConstDeviceSpan();
SegmentedQuantile(&ctx_, d_alphas.data(), key_it, key_it + d_alphas.size() + 1, val_it,
val_it + d_arr.Size(), &results_);
auto const& h_results = results_.HostVector();
EXPECT_EQ(15.0f, h_results[0]);
EXPECT_EQ(16.0f, h_results[1]);
ASSERT_EQ(26.0f, h_results[2]);
}
void NonWeighted() {
auto d_arr = arr_.View(DeviceOrd::CUDA(0));
auto d_key = indptr_.View(DeviceOrd::CUDA(0));
auto key_it = dh::MakeTransformIterator<std::size_t>(
thrust::make_counting_iterator(0ul), [=] __device__(std::size_t i) { return d_key(i); });
auto val_it =
dh::MakeTransformIterator<float>(thrust::make_counting_iterator(0ul),
[=] XGBOOST_DEVICE(std::size_t i) { return d_arr(i); });
for (auto const& pair : TestSet{{0.0f, 1.0f}, {0.5f, 3.0f}, {1.0f, 5.0f}}) {
SegmentedQuantile(&ctx_, pair.first, key_it, key_it + indptr_.Size(), val_it,
val_it + arr_.Size(), &results_);
this->Check(pair.second);
}
}
};
} // anonymous namespace
TEST_F(StatsGPU, Quantile) {
this->NonWeighted();
this->NonWeightedMulti();
}
TEST_F(StatsGPU, WeightedQuantile) {
this->Weighted();
this->WeightedMulti();
}
} // namespace common
} // namespace xgboost
|