File: test_ellpack_page.cu

package info (click to toggle)
xgboost 3.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 13,796 kB
  • sloc: cpp: 67,502; python: 35,503; java: 4,676; ansic: 1,426; sh: 1,320; xml: 1,197; makefile: 204; javascript: 19
file content (469 lines) | stat: -rw-r--r-- 18,503 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
/**
 * Copyright 2019-2024, XGBoost contributors
 */
#include <xgboost/base.h>

#include <utility>

#include "../../../src/common/categorical.h"          // for AsCat
#include "../../../src/common/compressed_iterator.h"  // for CompressedByteT
#include "../../../src/common/hist_util.h"
#include "../../../src/data/device_adapter.cuh"  // for CupyAdapter
#include "../../../src/data/ellpack_page.cuh"
#include "../../../src/data/ellpack_page.h"
#include "../../../src/data/gradient_index.h"  // for GHistIndexMatrix
#include "../../../src/tree/param.h"           // for TrainParam
#include "../helpers.h"
#include "../histogram_helpers.h"
#include "gtest/gtest.h"

namespace xgboost {
TEST(EllpackPage, EmptyDMatrix) {
  constexpr int kNRows = 0, kNCols = 0, kMaxBin = 256;
  constexpr float kSparsity = 0;
  auto dmat = RandomDataGenerator(kNRows, kNCols, kSparsity).GenerateDMatrix();
  auto ctx = MakeCUDACtx(0);
  auto& page = *dmat->GetBatches<EllpackPage>(
                        &ctx, BatchParam{kMaxBin, tree::TrainParam::DftSparseThreshold()})
                    .begin();
  auto impl = page.Impl();
  ASSERT_EQ(impl->info.row_stride, 0);
  ASSERT_EQ(impl->Cuts().TotalBins(), 0);
  ASSERT_EQ(impl->gidx_buffer.size(), 4);
}

TEST(EllpackPage, BuildGidxDense) {
  bst_idx_t n_samples = 16, n_features = 8;
  auto ctx = MakeCUDACtx(0);
  auto page = BuildEllpackPage(&ctx, n_samples, n_features);
  std::vector<common::CompressedByteT> h_gidx_buffer;
  auto h_accessor = page->GetHostAccessor(&ctx, &h_gidx_buffer);

  ASSERT_EQ(page->info.row_stride, n_features);

  std::vector<uint32_t> solution = {
    0, 3, 8,  9, 14, 17, 20, 21,
    0, 4, 7, 10, 14, 16, 19, 22,
    1, 3, 7, 11, 14, 15, 19, 21,
    2, 3, 7,  9, 13, 16, 20, 22,
    2, 3, 6,  9, 12, 16, 20, 21,
    1, 5, 6, 10, 13, 16, 20, 21,
    2, 5, 8,  9, 13, 17, 19, 22,
    2, 4, 6, 10, 14, 17, 19, 21,
    2, 5, 7,  9, 13, 16, 19, 22,
    0, 3, 8, 10, 12, 16, 19, 22,
    1, 3, 7, 10, 13, 16, 19, 21,
    1, 3, 8, 10, 13, 17, 20, 22,
    2, 4, 6,  9, 14, 15, 19, 22,
    1, 4, 6,  9, 13, 16, 19, 21,
    2, 4, 8, 10, 14, 15, 19, 22,
    1, 4, 7, 10, 14, 16, 19, 21,
  };
  for (size_t i = 0; i < n_samples * n_features; ++i) {
    auto fidx = i % n_features;
    ASSERT_EQ(solution[i], h_accessor.gidx_iter[i] + h_accessor.feature_segments[fidx]);
  }
  ASSERT_EQ(page->NumSymbols(), 3);
  ASSERT_EQ(page->NumNonMissing(&ctx, {}), n_samples * n_features);
  ASSERT_EQ(page->NumSymbols(), h_accessor.NullValue());
}

TEST(EllpackPage, BuildGidxSparse) {
  int constexpr kNRows = 16, kNCols = 8;
  auto ctx = MakeCUDACtx(0);
  auto page = BuildEllpackPage(&ctx, kNRows, kNCols, 0.9f);

  std::vector<common::CompressedByteT> h_gidx_buffer;
  auto h_acc = page->GetHostAccessor(&ctx, &h_gidx_buffer);

  ASSERT_EQ(page->info.row_stride, 3);

  // row_stride = 3, 16 rows, 48 entries for ELLPack
  std::vector<uint32_t> solution = {
    15, 24, 24,  0, 24, 24, 24, 24, 24, 24, 24, 24, 20, 24, 24, 24,
    24, 24, 24, 24, 24,  5, 24, 24,  0, 16, 24, 15, 24, 24, 24, 24,
    24,  7, 14, 16,  4, 24, 24, 24, 24, 24,  9, 24, 24,  1, 24, 24
  };
  for (size_t i = 0; i < kNRows * page->info.row_stride; ++i) {
    ASSERT_EQ(solution[i], h_acc.gidx_iter[i]);
  }
}

TEST(EllpackPage, FromCategoricalBasic) {
  using common::AsCat;
  size_t constexpr kRows = 1000, kCats = 13, kCols = 1;
  int32_t max_bins = 8;
  auto x = GenerateRandomCategoricalSingleColumn(kRows, kCats);
  auto m = GetDMatrixFromData(x, kRows, 1);
  auto& h_ft = m->Info().feature_types.HostVector();
  h_ft.resize(kCols, FeatureType::kCategorical);

  auto ctx = MakeCUDACtx(0);
  auto p = BatchParam{max_bins, tree::TrainParam::DftSparseThreshold()};
  auto ellpack = EllpackPage(&ctx, m.get(), p);
  auto accessor = ellpack.Impl()->GetDeviceAccessor(&ctx);
  ASSERT_EQ(kCats, accessor.NumBins());

  auto x_copy = x;
  std::sort(x_copy.begin(), x_copy.end());
  auto n_uniques = std::unique(x_copy.begin(), x_copy.end()) - x_copy.begin();
  ASSERT_EQ(n_uniques, kCats);

  std::vector<uint32_t> h_cuts_ptr(accessor.NumFeatures() + 1);
  dh::safe_cuda(cudaMemcpyAsync(h_cuts_ptr.data(), accessor.feature_segments,
                                sizeof(bst_feature_t) * h_cuts_ptr.size(), cudaMemcpyDefault));
  std::vector<float> h_cuts_values(accessor.gidx_fvalue_map.size());
  dh::CopyDeviceSpanToVector(&h_cuts_values, accessor.gidx_fvalue_map);

  ASSERT_EQ(h_cuts_ptr.size(), 2);
  ASSERT_EQ(h_cuts_values.size(), kCats);

  std::vector<common::CompressedByteT> h_gidx_buffer;
  auto h_accessor = ellpack.Impl()->GetHostAccessor(&ctx, &h_gidx_buffer);

  for (size_t i = 0; i < x.size(); ++i) {
    auto bin = h_accessor.gidx_iter[i];
    auto bin_value = h_cuts_values.at(bin);
    ASSERT_EQ(AsCat(x[i]), AsCat(bin_value));
  }
}

TEST(EllpackPage, FromCategoricalMissing) {
  auto ctx = MakeCUDACtx(0);

  std::shared_ptr<common::HistogramCuts> cuts;
  auto nan = std::numeric_limits<float>::quiet_NaN();
  // 2 rows and 3 columns. The second column is nan, row_stride is 2.
  std::vector<float> data{{0.1, nan, 1, 0.2, nan, 0}};
  auto p_fmat = GetDMatrixFromData(data, 2, 3);
  p_fmat->Info().feature_types.HostVector() = {FeatureType::kNumerical, FeatureType::kNumerical,
                                               FeatureType::kCategorical};
  p_fmat->Info().feature_types.SetDevice(ctx.Device());

  auto p = BatchParam{256, tree::TrainParam::DftSparseThreshold()};
  for (auto const& page : p_fmat->GetBatches<GHistIndexMatrix>(&ctx, p)) {
    cuts = std::make_shared<common::HistogramCuts>(page.Cuts());
  }
  cuts->SetDevice(ctx.Device());
  for (auto const& page : p_fmat->GetBatches<EllpackPage>(&ctx, p)) {
    std::vector<common::CompressedByteT> h_buffer;
    auto h_acc = page.Impl()->GetHostAccessor(&ctx, &h_buffer,
                                              p_fmat->Info().feature_types.ConstDeviceSpan());
    ASSERT_EQ(h_acc.n_rows, 2);
    ASSERT_EQ(cuts->NumFeatures(), 3);
    ASSERT_EQ(h_acc.row_stride, 2);
    ASSERT_EQ(h_acc.gidx_iter[0], 0);
    ASSERT_EQ(h_acc.gidx_iter[1], 4);  // cat 1
    ASSERT_EQ(h_acc.gidx_iter[2], 1);
    ASSERT_EQ(h_acc.gidx_iter[3], 3);  // cat 0
  }
}

struct ReadRowFunction {
  EllpackDeviceAccessor matrix;
  int row;
  bst_float* row_data_d;
  ReadRowFunction(EllpackDeviceAccessor matrix, int row, bst_float* row_data_d)
      : matrix(std::move(matrix)), row(row), row_data_d(row_data_d) {}

  __device__ void operator()(size_t col) {
    auto value = matrix.GetFvalue(row, col);
    if (isnan(value)) {
      value = -1;
    }
    row_data_d[col] = value;
  }
};

TEST(EllpackPage, Copy) {
  constexpr size_t kRows = 1024;
  constexpr size_t kCols = 16;

  // Create a DMatrix with multiple batches.
  auto dmat =
      RandomDataGenerator{kRows, kCols, 0.0f}.Batches(4).GenerateSparsePageDMatrix("temp", true);
  auto ctx = MakeCUDACtx(0);
  auto param = BatchParam{256, tree::TrainParam::DftSparseThreshold()};
  auto page = (*dmat->GetBatches<EllpackPage>(&ctx, param).begin()).Impl();

  // Create an empty result page.
  EllpackPageImpl result(&ctx, page->CutsShared(), page->is_dense, page->info.row_stride, kRows);

  // Copy batch pages into the result page.
  size_t offset = 0;
  for (auto& batch : dmat->GetBatches<EllpackPage>(&ctx, param)) {
    size_t num_elements = result.Copy(&ctx, batch.Impl(), offset);
    offset += num_elements;
  }

  size_t current_row = 0;
  thrust::device_vector<bst_float> row_d(kCols);
  thrust::device_vector<bst_float> row_result_d(kCols);
  std::vector<bst_float> row(kCols);
  std::vector<bst_float> row_result(kCols);
  for (auto& page : dmat->GetBatches<EllpackPage>(&ctx, param)) {
    auto impl = page.Impl();
    EXPECT_EQ(impl->base_rowid, current_row);

    for (size_t i = 0; i < impl->Size(); i++) {
      dh::LaunchN(kCols,
                  ReadRowFunction(impl->GetDeviceAccessor(&ctx), current_row, row_d.data().get()));
      thrust::copy(row_d.begin(), row_d.end(), row.begin());

      dh::LaunchN(kCols, ReadRowFunction(result.GetDeviceAccessor(&ctx), current_row,
                                         row_result_d.data().get()));
      thrust::copy(row_result_d.begin(), row_result_d.end(), row_result.begin());

      EXPECT_EQ(row, row_result);
      current_row++;
    }
  }
}

TEST(EllpackPage, Compact) {
  constexpr size_t kRows = 16;
  constexpr size_t kCols = 2;
  constexpr size_t kCompactedRows = 8;

  // Create a DMatrix with multiple batches.
  auto dmat =
      RandomDataGenerator{kRows, kCols, 0.0f}.Batches(2).GenerateSparsePageDMatrix("temp", true);
  auto ctx = MakeCUDACtx(0);
  auto param = BatchParam{256, tree::TrainParam::DftSparseThreshold()};
  auto page = (*dmat->GetBatches<EllpackPage>(&ctx, param).begin()).Impl();

  // Create an empty result page.
  EllpackPageImpl result(&ctx, page->CutsShared(), page->is_dense, page->info.row_stride,
                         kCompactedRows);

  // Compact batch pages into the result page.
  std::vector<size_t> row_indexes_h {
    SIZE_MAX, 0, 1, 2, SIZE_MAX, 3, SIZE_MAX, 4, 5, SIZE_MAX, 6, SIZE_MAX, 7, SIZE_MAX, SIZE_MAX,
    SIZE_MAX};
  thrust::device_vector<size_t> row_indexes_d = row_indexes_h;
  common::Span<size_t> row_indexes_span(row_indexes_d.data().get(), kRows);
  for (auto& batch : dmat->GetBatches<EllpackPage>(&ctx, param)) {
    result.Compact(&ctx, batch.Impl(), row_indexes_span);
  }

  size_t current_row = 0;
  thrust::device_vector<bst_float> row_d(kCols);
  thrust::device_vector<bst_float> row_result_d(kCols);
  std::vector<bst_float> row(kCols);
  std::vector<bst_float> row_result(kCols);
  for (auto& page : dmat->GetBatches<EllpackPage>(&ctx, param)) {
    auto impl = page.Impl();
    ASSERT_EQ(impl->base_rowid, current_row);

    for (size_t i = 0; i < impl->Size(); i++) {
      size_t compacted_row = row_indexes_h[current_row];
      if (compacted_row == SIZE_MAX) {
        current_row++;
        continue;
      }

      dh::LaunchN(kCols,
                  ReadRowFunction(impl->GetDeviceAccessor(&ctx), current_row, row_d.data().get()));
      dh::safe_cuda(cudaDeviceSynchronize());
      thrust::copy(row_d.begin(), row_d.end(), row.begin());

      dh::LaunchN(kCols, ReadRowFunction(result.GetDeviceAccessor(&ctx), compacted_row,
                                         row_result_d.data().get()));
      thrust::copy(row_result_d.begin(), row_result_d.end(), row_result.begin());

      EXPECT_EQ(row, row_result);
      current_row++;
    }
  }
}

namespace {
// Test for treating sparse ellpack as a dense
class CompressedDense : public ::testing::TestWithParam<std::size_t> {
  auto InitSparsePage(std::size_t null_column) const {
    bst_idx_t n_samples = 16, n_features = 8;
    std::vector<float> data(n_samples * n_features);

    std::iota(data.begin(), data.end(), 0.0f);
    for (std::size_t i = 0; i < data.size(); i += n_features) {
      data[i + null_column] = std::numeric_limits<float>::quiet_NaN();
    }
    data[null_column] = null_column;  // keep the first sample full.
    auto p_fmat = GetDMatrixFromData(data, n_samples, n_features);
    return p_fmat;
  }

  void CheckBasic(Context const* ctx, BatchParam batch, std::size_t null_column,
                  EllpackPageImpl const& impl) {
    ASSERT_FALSE(impl.IsDense());
    ASSERT_TRUE(impl.IsDenseCompressed());
    ASSERT_EQ(impl.NumSymbols(), batch.max_bin + 1);

    std::vector<common::CompressedByteT> h_gidx;
    auto h_acc = impl.GetHostAccessor(ctx, &h_gidx);
    ASSERT_EQ(h_acc.row_stride, h_acc.NumFeatures());
    ASSERT_EQ(h_acc.NullValue(), batch.max_bin);
    for (std::size_t i = 0; i < h_acc.row_stride * h_acc.n_rows; ++i) {
      auto [m, n] = linalg::UnravelIndex(i, h_acc.n_rows, h_acc.row_stride);
      if (n == null_column && m != 0) {
        ASSERT_EQ(static_cast<std::int32_t>(h_acc.gidx_iter[i]), h_acc.NullValue());
      } else {
        ASSERT_EQ(static_cast<std::int32_t>(h_acc.gidx_iter[i]), m);
      }
    }
  }

 public:
  void CheckFromSparsePage(std::size_t null_column) {
    auto p_fmat = this->InitSparsePage(null_column);
    auto ctx = MakeCUDACtx(0);
    auto batch = BatchParam{static_cast<bst_bin_t>(p_fmat->Info().num_row_),
                            std::numeric_limits<float>::quiet_NaN()};

    for (auto const& ellpack : p_fmat->GetBatches<EllpackPage>(&ctx, batch)) {
      auto impl = ellpack.Impl();
      this->CheckBasic(&ctx, batch, null_column, *impl);
    }
  }

  void CheckFromAdapter(std::size_t null_column) {
    bst_idx_t n_samples = 16, n_features = 8;

    auto ctx = MakeCUDACtx(0);
    HostDeviceVector<float> data(n_samples * n_features, 0.0f, ctx.Device());
    auto& h_data = data.HostVector();
    std::iota(h_data.begin(), h_data.end(), 0.0f);
    for (std::size_t i = 0; i < h_data.size(); i += n_features) {
      h_data[i + null_column] = std::numeric_limits<float>::quiet_NaN();
    }
    h_data[null_column] = null_column;  // Keep the first sample full.
    auto p_fmat = GetDMatrixFromData(h_data, n_samples, n_features);

    data.ConstDeviceSpan();  // Pull to device
    auto arri = GetArrayInterface(&data, n_samples, n_features);
    auto sarri = Json::Dump(arri);
    data::CupyAdapter adapter{StringView{sarri}};

    Context cpu_ctx;
    auto batch = BatchParam{static_cast<bst_bin_t>(p_fmat->Info().num_row_), 0.8};

    std::shared_ptr<common::HistogramCuts> cuts;
    for (auto const& page : p_fmat->GetBatches<GHistIndexMatrix>(&cpu_ctx, batch)) {
      cuts = std::make_shared<common::HistogramCuts>(page.Cuts());
    }
    dh::device_vector<bst_idx_t> row_counts(n_samples, n_features - 1);
    row_counts[0] = n_features;
    auto d_row_counts = dh::ToSpan(row_counts);
    ASSERT_EQ(adapter.NumColumns(), n_features);
    auto impl =
        EllpackPageImpl{&ctx,       adapter.Value(), std::numeric_limits<float>::quiet_NaN(),
                        false,      d_row_counts,    {},
                        n_features, n_samples,       cuts};
    this->CheckBasic(&ctx, batch, null_column, impl);
    dh::DefaultStream().Sync();
  }

  void CheckFromToGHist(std::size_t null_column) {
    Context cpu_ctx;
    auto ctx = MakeCUDACtx(0);
    std::vector<std::uint8_t> orig;
    {
      // Test from GHist
      auto p_fmat = this->InitSparsePage(null_column);
      auto batch = BatchParam{static_cast<bst_bin_t>(p_fmat->Info().num_row_), 0.8};
      for (auto const& page : p_fmat->GetBatches<GHistIndexMatrix>(&cpu_ctx, batch)) {
        orig = {page.data.cbegin(), page.data.cend()};
        auto impl = EllpackPageImpl{&ctx, page, {}};
        this->CheckBasic(&ctx, batch, null_column, impl);
      }
    }

    {
      // Test to GHist
      auto p_fmat = this->InitSparsePage(null_column);
      auto batch = BatchParam{static_cast<bst_bin_t>(p_fmat->Info().num_row_), 0.8};
      for (auto const& page : p_fmat->GetBatches<EllpackPage>(&ctx, batch)) {
        auto gidx = GHistIndexMatrix{&ctx, p_fmat->Info(), page, batch};
        ASSERT_EQ(gidx.Size(), p_fmat->Info().num_row_);
        for (std::size_t ridx = 0; ridx < gidx.Size(); ++ridx) {
          auto rbegin = gidx.row_ptr[ridx];
          auto rend = gidx.row_ptr[ridx + 1];
          if (ridx == 0) {
            ASSERT_EQ(rend - rbegin, p_fmat->Info().num_col_);
          } else {
            ASSERT_EQ(rend - rbegin, p_fmat->Info().num_col_ - 1);
          }
        }
        // GHist can't compress a dataset with missing values
        ASSERT_FALSE(gidx.index.Offset());
        ASSERT_TRUE(std::equal(gidx.data.cbegin(), gidx.data.cend(), orig.cbegin()));
      }
    }
  }
};

TEST_P(CompressedDense, FromSparsePage) { this->CheckFromSparsePage(this->GetParam()); }

TEST_P(CompressedDense, FromAdapter) { this->CheckFromAdapter(this->GetParam()); }

TEST_P(CompressedDense, FromToGHist) { this->CheckFromToGHist(this->GetParam()); }
}  // anonymous namespace

INSTANTIATE_TEST_SUITE_P(EllpackPage, CompressedDense, testing::Values(0ul, 1ul, 7ul));

namespace {
class SparseEllpack : public testing::TestWithParam<float> {
 protected:
  void TestFromGHistIndex(float sparsity) const {
    // Only testing with small sample size as the cuts might be different between host and
    // device.
    size_t n_samples{128}, n_features{13};
    Context ctx;
    Context gpu_ctx{MakeCUDACtx(0)};
    auto Xy = RandomDataGenerator{n_samples, n_features, sparsity}.GenerateDMatrix(true);
    std::unique_ptr<EllpackPageImpl> from_ghist;
    ASSERT_TRUE(Xy->SingleColBlock());

    for (auto const& page : Xy->GetBatches<GHistIndexMatrix>(&ctx, BatchParam{17, 0.6})) {
      from_ghist.reset(new EllpackPageImpl{&gpu_ctx, page, {}});
    }

    for (auto const& page : Xy->GetBatches<EllpackPage>(
             &gpu_ctx, BatchParam{17, tree::TrainParam::DftSparseThreshold()})) {
      auto from_sparse_page = page.Impl();
      ASSERT_EQ(from_sparse_page->is_dense, from_ghist->is_dense);
      ASSERT_EQ(from_sparse_page->base_rowid, 0);
      ASSERT_EQ(from_sparse_page->base_rowid, from_ghist->base_rowid);
      ASSERT_EQ(from_sparse_page->n_rows, from_ghist->n_rows);
      ASSERT_EQ(from_sparse_page->gidx_buffer.size(), from_ghist->gidx_buffer.size());
      ASSERT_EQ(from_sparse_page->NumSymbols(), from_ghist->NumSymbols());
      std::vector<common::CompressedByteT> h_gidx_from_sparse, h_gidx_from_ghist;
      auto from_ghist_acc = from_ghist->GetHostAccessor(&gpu_ctx, &h_gidx_from_ghist);
      auto from_sparse_acc = from_sparse_page->GetHostAccessor(&gpu_ctx, &h_gidx_from_sparse);
      for (size_t i = 0; i < from_ghist->n_rows * from_ghist->info.row_stride; ++i) {
        ASSERT_EQ(from_ghist_acc.gidx_iter[i], from_sparse_acc.gidx_iter[i]);
      }
    }
  }

  void TestNumNonMissing(float sparsity) const {
    size_t n_samples{1024}, n_features{13};
    auto ctx = MakeCUDACtx(0);
    auto p_fmat = RandomDataGenerator{n_samples, n_features, sparsity}.GenerateDMatrix(true);
    auto nnz = p_fmat->Info().num_nonzero_;
    for (auto const& page : p_fmat->GetBatches<EllpackPage>(
             &ctx, BatchParam{17, tree::TrainParam::DftSparseThreshold()})) {
      auto ellpack_nnz =
          page.Impl()->NumNonMissing(&ctx, p_fmat->Info().feature_types.ConstDeviceSpan());
      ASSERT_EQ(nnz, ellpack_nnz);
    }
  }
};
}  // namespace

TEST_P(SparseEllpack, FromGHistIndex) { this->TestFromGHistIndex(GetParam()); }

TEST_P(SparseEllpack, NumNonMissing) { this->TestNumNonMissing(this->GetParam()); }

INSTANTIATE_TEST_SUITE_P(EllpackPage, SparseEllpack, ::testing::Values(.0f, .2f, .4f, .8f));
}  // namespace xgboost