1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
/**
* Copyright 2021-2024, XGBoost contributors
*/
#include <gtest/gtest.h>
#include <xgboost/data.h> // for BatchIterator, BatchSet, DMatrix, BatchParam
#include <algorithm> // for sort, unique
#include <cmath> // for isnan
#include <cstddef> // for size_t
#include <limits> // for numeric_limits
#include <memory> // for shared_ptr, __shared_ptr_access, unique_ptr
#include <string> // for string
#include <tuple> // for make_tuple, tie, tuple
#include <utility> // for move
#include <vector> // for vector
#include "../../../src/common/categorical.h" // for AsCat
#include "../../../src/common/column_matrix.h" // for ColumnMatrix
#include "../../../src/common/hist_util.h" // for Index, HistogramCuts, SketchOnDMatrix
#include "../../../src/common/io.h" // for MemoryBufferStream
#include "../../../src/data/adapter.h" // for SparsePageAdapterBatch
#include "../../../src/data/gradient_index.h" // for GHistIndexMatrix
#include "../../../src/tree/param.h" // for TrainParam
#include "../helpers.h" // for GenerateRandomCategoricalSingleColumn...
#include "xgboost/base.h" // for bst_bin_t
#include "xgboost/context.h" // for Context
#include "xgboost/host_device_vector.h" // for HostDeviceVector
namespace xgboost::data {
TEST(GradientIndex, ExternalMemoryBaseRowID) {
Context ctx;
auto p_fmat = RandomDataGenerator{4096, 256, 0.5}
.Device(ctx.Device())
.Batches(8)
.GenerateSparsePageDMatrix("cache", true);
std::vector<size_t> base_rowids;
std::vector<float> hessian(p_fmat->Info().num_row_, 1);
for (auto const &page : p_fmat->GetBatches<GHistIndexMatrix>(&ctx, {64, hessian, true})) {
base_rowids.push_back(page.base_rowid);
}
std::size_t i = 0;
for (auto const &page : p_fmat->GetBatches<SparsePage>()) {
ASSERT_EQ(base_rowids[i], page.base_rowid);
++i;
}
base_rowids.clear();
for (auto const &page : p_fmat->GetBatches<GHistIndexMatrix>(&ctx, {64, hessian, false})) {
base_rowids.push_back(page.base_rowid);
}
i = 0;
for (auto const &page : p_fmat->GetBatches<SparsePage>()) {
ASSERT_EQ(base_rowids[i], page.base_rowid);
++i;
}
}
TEST(GradientIndex, FromCategoricalBasic) {
size_t constexpr kRows = 1000, kCats = 13, kCols = 1;
size_t max_bins = 8;
auto x = GenerateRandomCategoricalSingleColumn(kRows, kCats);
auto m = GetDMatrixFromData(x, kRows, 1);
Context ctx;
auto &h_ft = m->Info().feature_types.HostVector();
h_ft.resize(kCols, FeatureType::kCategorical);
BatchParam p(max_bins, 0.8);
GHistIndexMatrix gidx(&ctx, m.get(), max_bins, p.sparse_thresh, false, {});
auto x_copy = x;
std::sort(x_copy.begin(), x_copy.end());
auto n_uniques = std::unique(x_copy.begin(), x_copy.end()) - x_copy.begin();
ASSERT_EQ(n_uniques, kCats);
auto const &h_cut_ptr = gidx.cut.Ptrs();
auto const &h_cut_values = gidx.cut.Values();
ASSERT_EQ(h_cut_ptr.size(), 2);
ASSERT_EQ(h_cut_values.size(), kCats);
auto const &index = gidx.index;
for (size_t i = 0; i < x.size(); ++i) {
auto bin = index[i];
auto bin_value = h_cut_values.at(bin);
ASSERT_EQ(common::AsCat(x[i]), common::AsCat(bin_value));
}
}
TEST(GradientIndex, FromCategoricalLarge) {
size_t constexpr kRows = 1000, kCats = 512, kCols = 1;
bst_bin_t max_bins = 8;
auto x = GenerateRandomCategoricalSingleColumn(kRows, kCats);
auto m = GetDMatrixFromData(x, kRows, 1);
Context ctx;
auto &h_ft = m->Info().feature_types.HostVector();
h_ft.resize(kCols, FeatureType::kCategorical);
BatchParam p{max_bins, 0.8};
{
GHistIndexMatrix gidx{&ctx, m.get(), max_bins, p.sparse_thresh, false, {}};
ASSERT_TRUE(gidx.index.GetBinTypeSize() == common::kUint16BinsTypeSize);
}
{
for (auto const &page : m->GetBatches<GHistIndexMatrix>(&ctx, p)) {
common::HistogramCuts cut = page.cut;
GHistIndexMatrix gidx{m->Info(), std::move(cut), max_bins};
ASSERT_EQ(gidx.MaxNumBinPerFeat(), kCats);
}
}
}
TEST(GradientIndex, PushBatch) {
size_t constexpr kRows = 64, kCols = 4;
bst_bin_t max_bins = 64;
float st = 0.5;
Context ctx;
auto test = [&](float sparisty) {
auto m = RandomDataGenerator{kRows, kCols, sparisty}.GenerateDMatrix(true);
auto cuts = common::SketchOnDMatrix(&ctx, m.get(), max_bins, false, {});
common::HistogramCuts copy_cuts = cuts;
ASSERT_EQ(m->Info().num_row_, kRows);
ASSERT_EQ(m->Info().num_col_, kCols);
GHistIndexMatrix gmat{m->Info(), std::move(copy_cuts), max_bins};
for (auto const &page : m->GetBatches<SparsePage>()) {
SparsePageAdapterBatch batch{page.GetView()};
gmat.PushAdapterBatch(m->Ctx(), 0, 0, batch, std::numeric_limits<float>::quiet_NaN(), {}, st,
m->Info().num_row_);
gmat.PushAdapterBatchColumns(m->Ctx(), batch, std::numeric_limits<float>::quiet_NaN(), 0);
}
for (auto const &page : m->GetBatches<GHistIndexMatrix>(&ctx, BatchParam{max_bins, st})) {
for (size_t i = 0; i < kRows; ++i) {
for (size_t j = 0; j < kCols; ++j) {
auto v0 = gmat.GetFvalue(i, j, false);
auto v1 = page.GetFvalue(i, j, false);
if (sparisty == 0.0) {
ASSERT_FALSE(std::isnan(v0));
}
if (!std::isnan(v0)) {
ASSERT_EQ(v0, v1);
}
}
}
}
};
test(0.0f);
test(0.5f);
test(0.9f);
}
#if defined(XGBOOST_USE_CUDA)
namespace {
class GHistIndexMatrixTest : public testing::TestWithParam<std::tuple<float, float>> {
protected:
void Run(float density, double threshold) {
// Only testing with small sample size as the cuts might be different between host and
// device.
size_t n_samples{128}, n_features{13};
Context ctx;
auto Xy = RandomDataGenerator{n_samples, n_features, 1 - density}.GenerateDMatrix(true);
std::unique_ptr<GHistIndexMatrix> from_ellpack;
ASSERT_TRUE(Xy->SingleColBlock());
bst_bin_t constexpr kBins{17};
auto p = BatchParam{kBins, threshold};
auto gpu_ctx = MakeCUDACtx(0);
for (auto const &page : Xy->GetBatches<EllpackPage>(
&gpu_ctx, BatchParam{kBins, tree::TrainParam::DftSparseThreshold()})) {
from_ellpack = std::make_unique<GHistIndexMatrix>(&ctx, Xy->Info(), page, p);
}
for (auto const &from_sparse_page : Xy->GetBatches<GHistIndexMatrix>(&ctx, p)) {
ASSERT_EQ(from_sparse_page.IsDense(), from_ellpack->IsDense());
ASSERT_EQ(from_sparse_page.base_rowid, 0);
ASSERT_EQ(from_sparse_page.base_rowid, from_ellpack->base_rowid);
ASSERT_EQ(from_sparse_page.Size(), from_ellpack->Size());
ASSERT_EQ(from_sparse_page.index.Size(), from_ellpack->index.Size());
auto const &gidx_from_sparse = from_sparse_page.index;
auto const &gidx_from_ellpack = from_ellpack->index;
for (size_t i = 0; i < gidx_from_sparse.Size(); ++i) {
ASSERT_EQ(gidx_from_sparse[i], gidx_from_ellpack[i]);
}
auto const &columns_from_sparse = from_sparse_page.Transpose();
auto const &columns_from_ellpack = from_ellpack->Transpose();
ASSERT_EQ(columns_from_sparse.AnyMissing(), columns_from_ellpack.AnyMissing());
ASSERT_EQ(columns_from_sparse.GetTypeSize(), columns_from_ellpack.GetTypeSize());
ASSERT_EQ(columns_from_sparse.GetNumFeature(), columns_from_ellpack.GetNumFeature());
for (size_t i = 0; i < n_features; ++i) {
ASSERT_EQ(columns_from_sparse.GetColumnType(i), columns_from_ellpack.GetColumnType(i));
}
std::string from_sparse_buf;
{
common::AlignedMemWriteStream fo{&from_sparse_buf};
auto n_bytes = columns_from_sparse.Write(&fo);
ASSERT_EQ(fo.Tell(), n_bytes);
}
std::string from_ellpack_buf;
{
common::AlignedMemWriteStream fo{&from_ellpack_buf};
auto n_bytes = columns_from_sparse.Write(&fo);
ASSERT_EQ(fo.Tell(), n_bytes);
}
ASSERT_EQ(from_sparse_buf, from_ellpack_buf);
}
}
};
} // anonymous namespace
TEST_P(GHistIndexMatrixTest, FromEllpack) {
float sparsity;
double thresh;
std::tie(sparsity, thresh) = GetParam();
this->Run(sparsity, thresh);
}
INSTANTIATE_TEST_SUITE_P(GHistIndexMatrix, GHistIndexMatrixTest,
testing::Values(std::make_tuple(1.f, .0), // no missing
std::make_tuple(.2f, .8), // sparse columns
std::make_tuple(.8f, .2), // dense columns
std::make_tuple(1.f, .2), // no missing
std::make_tuple(.5f, .6), // sparse columns
std::make_tuple(.6f, .4))); // dense columns
#endif // defined(XGBOOST_USE_CUDA)
} // namespace xgboost::data
|