1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
|
/**
* Copyright 2020-2024, XGBoost contributors
*/
#include <gtest/gtest.h>
#include "../../../src/data/device_adapter.cuh"
#include "../../../src/data/ellpack_page.cuh"
#include "../../../src/data/ellpack_page.h"
#include "../../../src/data/iterative_dmatrix.h"
#include "../../../src/tree/param.h" // TrainParam
#include "../helpers.h"
#include "test_iterative_dmatrix.h"
namespace xgboost::data {
void TestEquivalent(float sparsity) {
auto ctx = MakeCUDACtx(0);
CudaArrayIterForTest iter{sparsity};
IterativeDMatrix m{&iter, iter.Proxy(), nullptr, Reset, Next,
std::numeric_limits<float>::quiet_NaN(), 0, 256,
std::numeric_limits<std::int64_t>::max()};
std::size_t offset = 0;
auto first = (*m.GetEllpackBatches(&ctx, {}).begin()).Impl();
std::unique_ptr<EllpackPageImpl> page_concatenated{new EllpackPageImpl{
&ctx, first->CutsShared(), first->is_dense, first->info.row_stride, 1000 * 100}};
for (auto& batch : m.GetBatches<EllpackPage>(&ctx, {})) {
auto page = batch.Impl();
size_t num_elements = page_concatenated->Copy(&ctx, page, offset);
offset += num_elements;
}
std::vector<common::CompressedByteT> h_iter_buffer;
auto from_iter = page_concatenated->GetHostAccessor(&ctx, &h_iter_buffer);
ASSERT_EQ(m.Info().num_col_, CudaArrayIterForTest::Cols());
ASSERT_EQ(m.Info().num_row_, CudaArrayIterForTest::Rows());
std::string interface_str = iter.AsArray();
auto adapter = CupyAdapter(interface_str);
std::unique_ptr<DMatrix> dm{
DMatrix::Create(&adapter, std::numeric_limits<float>::quiet_NaN(), 0)};
auto bp = BatchParam{256, tree::TrainParam::DftSparseThreshold()};
for (auto& ellpack : dm->GetBatches<EllpackPage>(&ctx, bp)) {
std::vector<common::CompressedByteT> h_data_buffer;
auto from_data = ellpack.Impl()->GetHostAccessor(&ctx, &h_data_buffer);
ASSERT_EQ(from_iter.gidx_fvalue_map.size(), from_data.gidx_fvalue_map.size());
for (size_t i = 0; i < from_iter.gidx_fvalue_map.size(); ++i) {
EXPECT_NEAR(from_iter.gidx_fvalue_map[i], from_data.gidx_fvalue_map[i], kRtEps);
}
ASSERT_EQ(from_iter.min_fvalue.size(), from_data.min_fvalue.size());
for (size_t i = 0; i < from_iter.min_fvalue.size(); ++i) {
ASSERT_NEAR(from_iter.min_fvalue[i], from_data.min_fvalue[i], kRtEps);
}
ASSERT_EQ(from_iter.NumFeatures(), from_data.NumFeatures());
for (size_t i = 0; i < from_iter.NumFeatures() + 1; ++i) {
ASSERT_EQ(from_iter.feature_segments[i], from_data.feature_segments[i]);
}
std::vector<common::CompressedByteT> buffer_from_iter, buffer_from_data;
auto data_iter = page_concatenated->GetHostAccessor(&ctx, &buffer_from_iter);
auto data_buf = ellpack.Impl()->GetHostAccessor(&ctx, &buffer_from_data);
ASSERT_NE(buffer_from_data.size(), 0);
ASSERT_NE(buffer_from_iter.size(), 0);
CHECK_EQ(ellpack.Impl()->NumSymbols(), page_concatenated->NumSymbols());
CHECK_EQ(from_data.n_rows * from_data.row_stride, from_data.n_rows * from_iter.row_stride);
for (size_t i = 0; i < from_data.n_rows * from_data.row_stride; ++i) {
CHECK_EQ(data_buf.gidx_iter[i], data_iter.gidx_iter[i]);
}
}
}
TEST(IterativeDeviceDMatrix, Basic) {
TestEquivalent(0.0);
TestEquivalent(0.5);
}
TEST(IterativeDeviceDMatrix, RowMajor) {
CudaArrayIterForTest iter(0.0f);
IterativeDMatrix m{&iter, iter.Proxy(), nullptr,
Reset, Next, std::numeric_limits<float>::quiet_NaN(),
0, 256, std::numeric_limits<std::int64_t>::max()};
size_t n_batches = 0;
std::string interface_str = iter.AsArray();
Context ctx{MakeCUDACtx(0)};
for (auto& ellpack : m.GetBatches<EllpackPage>(&ctx, {})) {
n_batches ++;
auto impl = ellpack.Impl();
std::vector<common::CompressedByteT> h_gidx;
auto h_accessor = impl->GetHostAccessor(&ctx, &h_gidx);
auto cols = CudaArrayIterForTest::Cols();
auto rows = CudaArrayIterForTest::Rows();
auto j_interface =
Json::Load({interface_str.c_str(), interface_str.size()});
ArrayInterface<2> loaded {get<Object const>(j_interface)};
std::vector<float> h_data(cols * rows);
common::Span<float const> s_data{static_cast<float const*>(loaded.data), cols * rows};
dh::CopyDeviceSpanToVector(&h_data, s_data);
auto cut_ptr = h_accessor.feature_segments;
for (auto i = 0ull; i < rows * cols; i++) {
int column_idx = i % cols;
EXPECT_EQ(impl->Cuts().SearchBin(h_data[i], column_idx),
h_accessor.gidx_iter[i] + cut_ptr[column_idx]);
}
EXPECT_EQ(m.Info().num_col_, cols);
EXPECT_EQ(m.Info().num_row_, rows);
EXPECT_EQ(m.Info().num_nonzero_, rows * cols);
}
// All batches are concatenated.
ASSERT_EQ(n_batches, 1);
}
TEST(IterativeDeviceDMatrix, RowMajorMissing) {
const float kMissing = std::numeric_limits<float>::quiet_NaN();
bst_idx_t rows = 4;
size_t cols = 3;
CudaArrayIterForTest iter{0.0f, rows, cols, 2};
std::string interface_str = iter.AsArray();
auto j_interface = Json::Load({interface_str.c_str(), interface_str.size()});
ArrayInterface<2> loaded{get<Object const>(j_interface)};
std::vector<float> h_data(cols * rows);
common::Span<float const> s_data{static_cast<float const*>(loaded.data), cols * rows};
dh::CopyDeviceSpanToVector(&h_data, s_data);
h_data[1] = kMissing;
h_data[5] = kMissing;
h_data[6] = kMissing;
h_data[9] = kMissing; // idx = (2, 0)
h_data[10] = kMissing; // idx = (2, 1)
auto ptr =
thrust::device_ptr<float>(reinterpret_cast<float*>(get<Integer>(j_interface["data"][0])));
thrust::copy(h_data.cbegin(), h_data.cend(), ptr);
IterativeDMatrix m{&iter, iter.Proxy(), nullptr,
Reset, Next, std::numeric_limits<float>::quiet_NaN(),
0, 256, std::numeric_limits<std::int64_t>::max()};
auto ctx = MakeCUDACtx(0);
auto& ellpack =
*m.GetBatches<EllpackPage>(&ctx, BatchParam{256, tree::TrainParam::DftSparseThreshold()})
.begin();
auto impl = ellpack.Impl();
std::vector<common::CompressedByteT> h_gidx;
auto h_acc = impl->GetHostAccessor(&ctx, &h_gidx);
// null values get placed after valid values in a row
ASSERT_FALSE(h_acc.IsDenseCompressed());
ASSERT_EQ(h_acc.row_stride, cols - 1);
ASSERT_EQ(h_acc.gidx_iter[7], impl->GetDeviceAccessor(&ctx).NullValue());
for (std::size_t i = 0; i < 7; ++i) {
ASSERT_NE(h_acc.gidx_iter[i], impl->GetDeviceAccessor(&ctx).NullValue());
}
EXPECT_EQ(m.Info().num_col_, cols);
EXPECT_EQ(m.Info().num_row_, rows);
EXPECT_EQ(m.Info().num_nonzero_, rows * cols - 5);
}
TEST(IterativeDeviceDMatrix, IsDense) {
int num_bins = 16;
auto test = [num_bins](float sparsity) {
CudaArrayIterForTest iter(sparsity);
IterativeDMatrix m(&iter, iter.Proxy(), nullptr, Reset, Next,
std::numeric_limits<float>::quiet_NaN(), 0, num_bins,
std::numeric_limits<std::int64_t>::max());
if (sparsity == 0.0) {
ASSERT_TRUE(m.IsDense());
} else {
ASSERT_FALSE(m.IsDense());
}
};
test(0.0);
test(0.1);
test(1.0);
}
TEST(IterativeDeviceDMatrix, Ref) {
Context ctx{MakeCUDACtx(0)};
TestRefDMatrix<EllpackPage, CudaArrayIterForTest>(
&ctx, [](EllpackPage const& page) { return page.Impl()->Cuts(); });
}
} // namespace xgboost::data
|