1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
|
/**
* Copyright 2019-2024, XGBoost Contributors
*/
#include <gtest/gtest.h>
#include <xgboost/feature_map.h> // for FeatureMap
#include <memory>
#include "../helpers.h"
#include "xgboost/context.h"
#include "xgboost/gbm.h"
#include "xgboost/json.h"
#include "xgboost/learner.h"
namespace xgboost::gbm {
TEST(GBLinear, JsonIO) {
size_t constexpr kRows = 16, kCols = 16;
Context ctx;
LearnerModelParam mparam{MakeMP(kCols, .5, 1)};
std::unique_ptr<GradientBooster> gbm{
CreateTrainedGBM("gblinear", Args{}, kRows, kCols, &mparam, &ctx)};
Json model { Object() };
gbm->SaveModel(&model);
ASSERT_TRUE(IsA<Object>(model));
std::string model_str;
Json::Dump(model, &model_str);
model = Json::Load(StringView{model_str.c_str(), model_str.size()});
ASSERT_TRUE(IsA<Object>(model));
{
model = model["model"];
auto weights = get<Array>(model["weights"]);
ASSERT_EQ(weights.size(), 17);
}
}
TEST(GBLinear, Dump) {
Context ctx;
size_t constexpr kRows = 16, kCols = 16;
LearnerModelParam mparam{MakeMP(kCols, .5, 1)};
std::unique_ptr<GradientBooster> gbm{
CreateTrainedGBM("gblinear", Args{}, kRows, kCols, &mparam, &ctx)};
FeatureMap fmap;
ASSERT_THAT([&] { [[maybe_unused]] auto vec = gbm->DumpModel(fmap, true, "dot"); },
GMockThrow(R"(`dot` is not supported)"));
}
} // namespace xgboost::gbm
|