1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
|
/**
* Copyright 2016-2024, XGBoost contributors
*/
#pragma once
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <xgboost/base.h>
#include <xgboost/context.h>
#include <xgboost/json.h>
#include <xgboost/learner.h> // for LearnerModelParam
#include <xgboost/model.h> // for Configurable
#include <cstdint> // std::int32_t
#include <cstdio>
#include <memory>
#include <string>
#include <vector>
#if defined(__CUDACC__)
#include "../../src/collective/communicator-inl.h" // for GetRank
#include "../../src/common/cuda_rt_utils.h" // for AllVisibleGPUs
#endif // defined(__CUDACC__)
#include "filesystem.h" // dmlc::TemporaryDirectory
#include "xgboost/linalg.h"
#if defined(__CUDACC__)
#define DeclareUnifiedTest(name) GPU ## name
#else
#define DeclareUnifiedTest(name) name
#endif
#if defined(__CUDACC__)
#define GPUIDX (curt::AllVisibleGPUs() == 1 ? 0 : collective::GetRank())
#else
#define GPUIDX (-1)
#endif
#if defined(__CUDACC__)
#define DeclareUnifiedDistributedTest(name) MGPU ## name
#else
#define DeclareUnifiedDistributedTest(name) name
#endif
namespace xgboost {
class ObjFunction;
class Metric;
struct LearnerModelParam;
class GradientBooster;
}
template <typename Float>
Float RelError(Float l, Float r) {
static_assert(std::is_floating_point_v<Float>);
return std::abs(1.0f - l / r);
}
bool FileExists(const std::string& filename);
void CreateSimpleTestData(const std::string& filename);
// Create a libsvm format file with 3 entries per-row. `zero_based` specifies whether it's
// 0-based indexing.
void CreateBigTestData(const std::string& filename, size_t n_entries, bool zero_based = true);
void CreateTestCSV(std::string const& path, size_t rows, size_t cols);
void CheckObjFunction(std::unique_ptr<xgboost::ObjFunction> const& obj,
std::vector<xgboost::bst_float> preds,
std::vector<xgboost::bst_float> labels,
std::vector<xgboost::bst_float> weights,
std::vector<xgboost::bst_float> out_grad,
std::vector<xgboost::bst_float> out_hess);
xgboost::Json CheckConfigReloadImpl(xgboost::Configurable* const configurable,
std::string name);
template <typename T>
xgboost::Json CheckConfigReload(std::unique_ptr<T> const& configurable,
std::string name = "") {
return CheckConfigReloadImpl(dynamic_cast<xgboost::Configurable*>(configurable.get()),
name);
}
void CheckRankingObjFunction(std::unique_ptr<xgboost::ObjFunction> const& obj,
std::vector<xgboost::bst_float> preds,
std::vector<xgboost::bst_float> labels,
std::vector<xgboost::bst_float> weights,
std::vector<xgboost::bst_uint> groups,
std::vector<xgboost::bst_float> out_grad,
std::vector<xgboost::bst_float> out_hess);
xgboost::bst_float GetMetricEval(
xgboost::Metric * metric,
xgboost::HostDeviceVector<xgboost::bst_float> const& preds,
std::vector<xgboost::bst_float> labels,
std::vector<xgboost::bst_float> weights = std::vector<xgboost::bst_float>(),
std::vector<xgboost::bst_uint> groups = std::vector<xgboost::bst_uint>(),
xgboost::DataSplitMode data_split_Mode = xgboost::DataSplitMode::kRow);
double GetMultiMetricEval(xgboost::Metric* metric,
xgboost::HostDeviceVector<xgboost::bst_float> const& preds,
xgboost::linalg::Tensor<float, 2> const& labels,
std::vector<xgboost::bst_float> weights = {},
std::vector<xgboost::bst_uint> groups = {},
xgboost::DataSplitMode data_split_Mode = xgboost::DataSplitMode::kRow);
namespace xgboost {
float GetBaseScore(Json const &config);
/*!
* \brief Linear congruential generator.
*
* The distribution defined in std is not portable. Given the same seed, it
* migth produce different outputs on different platforms or with different
* compilers. The SimpleLCG implemented here is to make sure all tests are
* reproducible.
*/
class SimpleLCG {
private:
using StateType = uint64_t;
static StateType constexpr kDefaultInit = 3;
static StateType constexpr kDefaultAlpha = 61;
static StateType constexpr kMaxValue = (static_cast<StateType>(1) << 32) - 1;
StateType state_;
StateType const alpha_;
StateType const mod_;
public:
using result_type = StateType; // NOLINT
public:
SimpleLCG() : state_{kDefaultInit}, alpha_{kDefaultAlpha}, mod_{kMaxValue} {}
SimpleLCG(SimpleLCG const& that) = default;
SimpleLCG(SimpleLCG&& that) = default;
void Seed(StateType seed) { state_ = seed % mod_; }
/*!
* \brief Initialize SimpleLCG.
*
* \param state Initial state, can also be considered as seed. If set to
* zero, SimpleLCG will use internal default value.
*/
explicit SimpleLCG(StateType state)
: state_{state == 0 ? kDefaultInit : state}, alpha_{kDefaultAlpha}, mod_{kMaxValue} {}
StateType operator()();
StateType Min() const;
StateType Max() const;
constexpr result_type static min() { return 0; }; // NOLINT
constexpr result_type static max() { return kMaxValue; } // NOLINT
};
template <typename ResultT>
class SimpleRealUniformDistribution {
private:
ResultT const lower_;
ResultT const upper_;
/*! \brief Over-simplified version of std::generate_canonical. */
template <size_t Bits, typename GeneratorT>
ResultT GenerateCanonical(GeneratorT* rng) const {
static_assert(std::is_floating_point_v<ResultT>, "Result type must be floating point.");
long double const r = (static_cast<long double>(rng->Max())
- static_cast<long double>(rng->Min())) + 1.0L;
auto const log2r = static_cast<size_t>(std::log(r) / std::log(2.0L));
size_t m = std::max<size_t>(1UL, (Bits + log2r - 1UL) / log2r);
ResultT sum_value = 0, r_k = 1;
for (size_t k = m; k != 0; --k) {
sum_value += static_cast<ResultT>((*rng)() - rng->Min()) * r_k;
r_k *= static_cast<ResultT>(r);
}
ResultT res = sum_value / r_k;
return res;
}
public:
SimpleRealUniformDistribution(ResultT l, ResultT u) :
lower_{l}, upper_{u} {}
template <typename GeneratorT>
ResultT operator()(GeneratorT* rng) const {
ResultT tmp = GenerateCanonical<std::numeric_limits<ResultT>::digits,
GeneratorT>(rng);
auto ret = (tmp * (upper_ - lower_)) + lower_;
// Correct floating point error.
return std::max(ret, lower_);
}
};
template <typename T>
Json GetArrayInterface(HostDeviceVector<T> const* storage, size_t rows, size_t cols) {
Json array_interface{Object()};
array_interface["data"] = std::vector<Json>(2);
if (storage->DeviceCanRead()) {
array_interface["data"][0] = Integer{reinterpret_cast<int64_t>(storage->ConstDevicePointer())};
array_interface["stream"] = nullptr;
} else {
array_interface["data"][0] = Integer{reinterpret_cast<int64_t>(storage->ConstHostPointer())};
}
array_interface["data"][1] = Boolean(false);
array_interface["shape"] = std::vector<Json>(2);
array_interface["shape"][0] = rows;
array_interface["shape"][1] = cols;
char t = linalg::detail::ArrayInterfaceHandler::TypeChar<T>();
array_interface["typestr"] = String(std::string{"<"} + t + std::to_string(sizeof(T)));
array_interface["version"] = 3;
return array_interface;
}
// Generate in-memory random data without using DMatrix.
class RandomDataGenerator {
bst_idx_t rows_;
size_t cols_;
float sparsity_;
float lower_{0.0f};
float upper_{1.0f};
bst_target_t n_targets_{1};
bst_target_t n_classes_{0};
DeviceOrd device_{DeviceOrd::CPU()};
std::size_t n_batches_{0};
std::uint64_t seed_{0};
SimpleLCG lcg_;
bst_bin_t bins_{0};
std::vector<FeatureType> ft_;
bst_cat_t max_cat_{32};
bool on_host_{false};
std::shared_ptr<DMatrix> ref_{nullptr};
std::int64_t min_cache_page_bytes_{0};
std::int64_t max_num_device_pages_{1};
Json ArrayInterfaceImpl(HostDeviceVector<float>* storage, size_t rows, size_t cols) const;
void GenerateLabels(std::shared_ptr<DMatrix> p_fmat) const;
public:
RandomDataGenerator(bst_idx_t rows, size_t cols, float sparsity)
: rows_{rows}, cols_{cols}, sparsity_{sparsity}, lcg_{seed_} {}
RandomDataGenerator& Lower(float v) {
lower_ = v;
return *this;
}
RandomDataGenerator& Upper(float v) {
upper_ = v;
return *this;
}
RandomDataGenerator& Device(DeviceOrd d) {
device_ = d;
return *this;
}
RandomDataGenerator& Batches(std::size_t n_batches) {
n_batches_ = n_batches;
return *this;
}
RandomDataGenerator& OnHost(bool on_host) {
on_host_ = on_host;
return *this;
}
RandomDataGenerator& Ref(std::shared_ptr<DMatrix> ref) {
this->ref_ = std::move(ref);
return *this;
}
RandomDataGenerator& MinPageCacheBytes(std::int64_t min_cache_page_bytes) {
this->min_cache_page_bytes_ = min_cache_page_bytes;
return *this;
}
RandomDataGenerator& MaxNumDevicePages(std::int64_t max_num_device_pages) {
this->max_num_device_pages_ = max_num_device_pages;
return *this;
}
RandomDataGenerator& Seed(uint64_t s) {
seed_ = s;
lcg_.Seed(seed_);
return *this;
}
RandomDataGenerator& Bins(bst_bin_t b) {
bins_ = b;
return *this;
}
RandomDataGenerator& Type(common::Span<FeatureType> ft) {
CHECK_EQ(ft.size(), cols_);
ft_.resize(ft.size());
std::copy(ft.cbegin(), ft.cend(), ft_.begin());
return *this;
}
RandomDataGenerator& MaxCategory(bst_cat_t cat) {
max_cat_ = cat;
return *this;
}
RandomDataGenerator& Targets(bst_target_t n_targets) {
n_targets_ = n_targets;
return *this;
}
RandomDataGenerator& Classes(bst_target_t n_classes) {
n_classes_ = n_classes;
return *this;
}
void GenerateDense(HostDeviceVector<float>* out) const;
std::string GenerateArrayInterface(HostDeviceVector<float>* storage) const;
/*!
* \brief Generate batches of array interface stored in consecutive memory.
*
* \param storage The consecutive momory used to store the arrays.
* \param batches Number of batches.
*
* \return A vector storing JSON string representation of interface for each batch, and
* a single JSON string representing the consecutive memory as a whole
* (combining all the batches).
*/
std::pair<std::vector<std::string>, std::string> GenerateArrayInterfaceBatch(
HostDeviceVector<float>* storage, size_t batches) const;
std::string GenerateColumnarArrayInterface(std::vector<HostDeviceVector<float>>* data) const;
void GenerateCSR(HostDeviceVector<float>* value, HostDeviceVector<std::size_t>* row_ptr,
HostDeviceVector<bst_feature_t>* columns) const;
[[nodiscard]] std::shared_ptr<DMatrix> GenerateDMatrix(
bool with_label = false, DataSplitMode data_split_mode = DataSplitMode::kRow) const;
[[nodiscard]] std::shared_ptr<DMatrix> GenerateSparsePageDMatrix(std::string prefix,
bool with_label) const;
[[nodiscard]] std::shared_ptr<DMatrix> GenerateExtMemQuantileDMatrix(std::string prefix,
bool with_label) const;
std::shared_ptr<DMatrix> GenerateQuantileDMatrix(bool with_label);
};
// Generate an empty DMatrix, mostly for its meta info.
inline std::shared_ptr<DMatrix> EmptyDMatrix() {
return RandomDataGenerator{0, 0, 0.0}.GenerateDMatrix();
}
inline std::vector<float> GenerateRandomCategoricalSingleColumn(int n, size_t num_categories) {
std::vector<float> x(n);
std::mt19937 rng(0);
std::uniform_int_distribution<size_t> dist(0, num_categories - 1);
std::generate(x.begin(), x.end(), [&]() { return static_cast<float>(dist(rng)); });
// Make sure each category is present
for (size_t i = 0; i < num_categories; i++) {
x[i] = static_cast<decltype(x)::value_type>(i);
}
return x;
}
std::shared_ptr<DMatrix> GetDMatrixFromData(const std::vector<float>& x, std::size_t num_rows,
bst_feature_t num_columns);
std::unique_ptr<GradientBooster> CreateTrainedGBM(std::string name, Args kwargs, size_t kRows,
size_t kCols,
LearnerModelParam const* learner_model_param,
Context const* generic_param);
/**
* \brief Make a context that uses CUDA if device >= 0.
*/
inline Context MakeCUDACtx(std::int32_t device) {
if (device == DeviceOrd::CPUOrdinal()) {
return Context{};
}
return Context{}.MakeCUDA(device);
}
inline HostDeviceVector<GradientPair> GenerateRandomGradients(const size_t n_rows,
float lower = 0.0f,
float upper = 1.0f) {
xgboost::SimpleLCG gen;
xgboost::SimpleRealUniformDistribution<bst_float> dist(lower, upper);
std::vector<GradientPair> h_gpair(n_rows);
for (auto& gpair : h_gpair) {
bst_float grad = dist(&gen);
bst_float hess = dist(&gen);
gpair = GradientPair(grad, hess);
}
HostDeviceVector<GradientPair> gpair(h_gpair);
return gpair;
}
inline linalg::Matrix<GradientPair> GenerateRandomGradients(Context const* ctx, bst_idx_t n_rows,
bst_target_t n_targets,
float lower = 0.0f,
float upper = 1.0f) {
auto g = GenerateRandomGradients(n_rows * n_targets, lower, upper);
linalg::Matrix<GradientPair> gpair({n_rows, static_cast<bst_idx_t>(n_targets)}, ctx->Device());
gpair.Data()->Copy(g);
return gpair;
}
typedef void *DMatrixHandle; // NOLINT(*);
class ArrayIterForTest {
protected:
HostDeviceVector<float> data_;
size_t iter_{0};
DMatrixHandle proxy_;
std::unique_ptr<RandomDataGenerator> rng_;
std::vector<std::string> batches_;
std::string interface_;
bst_idx_t rows_;
size_t cols_;
size_t n_batches_;
public:
bst_idx_t static constexpr Rows() { return 1024; }
size_t static constexpr Batches() { return 100; }
size_t static constexpr Cols() { return 13; }
public:
[[nodiscard]] std::string AsArray() const { return interface_; }
virtual int Next() = 0;
virtual void Reset() { iter_ = 0; }
[[nodiscard]] std::size_t Iter() const { return iter_; }
auto Proxy() -> decltype(proxy_) { return proxy_; }
explicit ArrayIterForTest(float sparsity, bst_idx_t rows, size_t cols, size_t batches);
/**
* \brief Create iterator with user provided data.
*/
explicit ArrayIterForTest(Context const* ctx, HostDeviceVector<float> const& data,
std::size_t n_samples, bst_feature_t n_features, std::size_t n_batches);
virtual ~ArrayIterForTest();
};
class CudaArrayIterForTest : public ArrayIterForTest {
public:
explicit CudaArrayIterForTest(float sparsity, size_t rows = Rows(), size_t cols = Cols(),
size_t batches = Batches());
int Next() override;
~CudaArrayIterForTest() override = default;
};
class NumpyArrayIterForTest : public ArrayIterForTest {
public:
explicit NumpyArrayIterForTest(float sparsity, bst_idx_t rows = Rows(), size_t cols = Cols(),
size_t batches = Batches());
explicit NumpyArrayIterForTest(Context const* ctx, HostDeviceVector<float> const& data,
std::size_t n_samples, bst_feature_t n_features,
std::size_t n_batches)
: ArrayIterForTest{ctx, data, n_samples, n_features, n_batches} {}
int Next() override;
~NumpyArrayIterForTest() override = default;
};
void DMatrixToCSR(DMatrix *dmat, std::vector<float> *p_data,
std::vector<size_t> *p_row_ptr,
std::vector<bst_feature_t> *p_cids);
typedef void *DataIterHandle; // NOLINT(*)
inline void Reset(DataIterHandle self) {
static_cast<ArrayIterForTest*>(self)->Reset();
}
inline int Next(DataIterHandle self) {
return static_cast<ArrayIterForTest*>(self)->Next();
}
/**
* @brief Create an array interface for host vector.
*/
template <typename T>
char const* Make1dInterfaceTest(T const* vec, std::size_t len) {
static thread_local std::string str;
str = linalg::Make1dInterface(vec, len);
return str.c_str();
}
class RMMAllocator;
using RMMAllocatorPtr = std::unique_ptr<RMMAllocator, void(*)(RMMAllocator*)>;
RMMAllocatorPtr SetUpRMMResourceForCppTests(int argc, char** argv);
/*
* \brief Make learner model param
*/
inline LearnerModelParam MakeMP(bst_feature_t n_features, float base_score, uint32_t n_groups,
DeviceOrd device = DeviceOrd::CPU()) {
size_t shape[1]{1};
LearnerModelParam mparam(n_features, linalg::Tensor<float, 1>{{base_score}, shape, device},
n_groups, 1, MultiStrategy::kOneOutputPerTree);
return mparam;
}
inline std::int32_t AllThreadsForTest() { return Context{}.Threads(); }
inline DeviceOrd FstCU() { return DeviceOrd::CUDA(0); }
// GPU device ordinal for distributed tests
std::int32_t DistGpuIdx();
inline auto GMockThrow(StringView msg) {
return ::testing::ThrowsMessage<dmlc::Error>(::testing::HasSubstr(msg));
}
} // namespace xgboost
|