File: test_auc.h

package info (click to toggle)
xgboost 3.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 13,796 kB
  • sloc: cpp: 67,502; python: 35,503; java: 4,676; ansic: 1,426; sh: 1,320; xml: 1,197; makefile: 204; javascript: 19
file content (246 lines) | stat: -rw-r--r-- 10,745 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/*!
 * Copyright (c) 2023 by XGBoost Contributors
 */
#pragma once

#include <xgboost/metric.h>

#include "../helpers.h"

namespace xgboost::metric {
inline void VerifyBinaryAUC(DataSplitMode data_split_mode, DeviceOrd device) {
  auto ctx = MakeCUDACtx(device.ordinal);
  std::unique_ptr<Metric> uni_ptr{Metric::Create("auc", &ctx)};
  Metric* metric = uni_ptr.get();
  ASSERT_STREQ(metric->Name(), "auc");

  // Binary
  EXPECT_NEAR(GetMetricEval(metric, {0, 1}, {0, 1}, {}, {}, data_split_mode), 1.0f, 1e-10);
  EXPECT_NEAR(GetMetricEval(metric, {0, 1}, {1, 0}, {}, {}, data_split_mode), 0.0f, 1e-10);
  EXPECT_NEAR(GetMetricEval(metric, {0, 0}, {0, 1}, {}, {}, data_split_mode), 0.5f, 1e-10);
  EXPECT_NEAR(GetMetricEval(metric, {1, 1}, {0, 1}, {}, {}, data_split_mode), 0.5f, 1e-10);
  EXPECT_NEAR(GetMetricEval(metric, {0, 0}, {1, 0}, {}, {}, data_split_mode), 0.5f, 1e-10);
  EXPECT_NEAR(GetMetricEval(metric, {1, 1}, {1, 0}, {}, {}, data_split_mode), 0.5f, 1e-10);
  EXPECT_NEAR(GetMetricEval(metric, {1, 0, 0}, {0, 0, 1}, {}, {}, data_split_mode), 0.25f, 1e-10);

  // Invalid dataset
  auto p_fmat = EmptyDMatrix();
  MetaInfo& info = p_fmat->Info();
  info.labels = linalg::Tensor<float, 2>{{0.0f, 0.0f}, {2}, DeviceOrd::CPU()};
  float auc = metric->Evaluate({1, 1}, p_fmat);
  ASSERT_TRUE(std::isnan(auc));
  *info.labels.Data() = HostDeviceVector<float>{};
  auc = metric->Evaluate(HostDeviceVector<float>{}, p_fmat);
  ASSERT_TRUE(std::isnan(auc));

  EXPECT_NEAR(GetMetricEval(metric, {0, 1, 0, 1}, {0, 1, 0, 1}, {}, {}, data_split_mode), 1.0f,
              1e-10);

  // AUC with instance weights
  EXPECT_NEAR(GetMetricEval(metric, {0.9f, 0.1f, 0.4f, 0.3f}, {0, 0, 1, 1},
                            {1.0f, 3.0f, 2.0f, 4.0f}, {}, data_split_mode),
              0.75f, 0.001f);

  // regression test case
  ASSERT_NEAR(GetMetricEval(metric, {0.79523796, 0.5201713,  0.79523796, 0.24273258, 0.53452194,
                                     0.53452194, 0.24273258, 0.5201713,  0.79523796, 0.53452194,
                                     0.24273258, 0.53452194, 0.79523796, 0.5201713,  0.24273258,
                                     0.5201713,  0.5201713,  0.53452194, 0.5201713,  0.53452194},
                            {0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0}, {}, {},
                            data_split_mode),
              0.5, 1e-10);
}

inline void VerifyMultiClassAUC(DataSplitMode data_split_mode, DeviceOrd device) {
  auto ctx = MakeCUDACtx(device.ordinal);
  std::unique_ptr<Metric> uni_ptr{Metric::Create("auc", &ctx)};
  auto metric = uni_ptr.get();

  // MultiClass
  // 3x3
  EXPECT_NEAR(GetMetricEval(metric,
                            {
                                1.0f, 0.0f, 0.0f,  // p_0
                                0.0f, 1.0f, 0.0f,  // p_1
                                0.0f, 0.0f, 1.0f   // p_2
                            },
                            {0, 1, 2}, {}, {}, data_split_mode),
              1.0f, 1e-10);

  EXPECT_NEAR(GetMetricEval(metric,
                            {
                                1.0f, 0.0f, 0.0f,  // p_0
                                0.0f, 1.0f, 0.0f,  // p_1
                                0.0f, 0.0f, 1.0f   // p_2
                            },
                            {0, 1, 2}, {1.0f, 1.0f, 1.0f}, {}, data_split_mode),
              1.0f, 1e-10);

  EXPECT_NEAR(GetMetricEval(metric,
                            {
                                1.0f, 0.0f, 0.0f,  // p_0
                                0.0f, 1.0f, 0.0f,  // p_1
                                0.0f, 0.0f, 1.0f   // p_2
                            },
                            {2, 1, 0}, {}, {}, data_split_mode),
              0.5f, 1e-10);

  EXPECT_NEAR(GetMetricEval(metric,
                            {
                                1.0f, 0.0f, 0.0f,  // p_0
                                0.0f, 1.0f, 0.0f,  // p_1
                                0.0f, 0.0f, 1.0f   // p_2
                            },
                            {2, 0, 1}, {}, {}, data_split_mode),
              0.25f, 1e-10);

  // invalid dataset
  float auc = GetMetricEval(metric,
                            {
                                1.0f, 0.0f, 0.0f,                 // p_0
                                0.0f, 1.0f, 0.0f,                 // p_1
                                0.0f, 0.0f, 1.0f                  // p_2
                            },
                            {0, 1, 1}, {}, {}, data_split_mode);  // no class 2.
  EXPECT_TRUE(std::isnan(auc)) << auc;

  HostDeviceVector<float> predts{
      0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,
  };
  std::vector<float> labels{1.0f, 0.0f, 2.0f, 1.0f};
  auc = GetMetricEval(metric, predts, labels, {1.0f, 2.0f, 3.0f, 4.0f}, {}, data_split_mode);
  ASSERT_GT(auc, 0.714);
}

inline void VerifyRankingAUC(DataSplitMode data_split_mode, DeviceOrd device) {
  auto ctx = MakeCUDACtx(device.ordinal);
  std::unique_ptr<Metric> metric{Metric::Create("auc", &ctx)};

  // single group
  EXPECT_NEAR(GetMetricEval(metric.get(), {0.7f, 0.2f, 0.3f, 0.6f}, {1.0f, 0.8f, 0.4f, 0.2f},
                            /*weights=*/{}, {0, 4}, data_split_mode),
              0.5f, 1e-10);

  // multi group
  EXPECT_NEAR(GetMetricEval(metric.get(), {0, 1, 2, 0, 1, 2}, {0, 1, 2, 0, 1, 2}, /*weights=*/{},
                            {0, 3, 6}, data_split_mode),
              1.0f, 1e-10);

  EXPECT_NEAR(GetMetricEval(metric.get(), {0, 1, 2, 0, 1, 2}, {0, 1, 2, 0, 1, 2},
                            /*weights=*/{1.0f, 2.0f}, {0, 3, 6}, data_split_mode),
              1.0f, 1e-10);

  // AUC metric for grouped datasets - exception scenarios
  ASSERT_TRUE(std::isnan(
      GetMetricEval(metric.get(), {0, 1, 2}, {0, 0, 0}, {}, {0, 2, 3}, data_split_mode)));

  // regression case
  HostDeviceVector<float> predt{
      0.33935383, 0.5149714,  0.32138085, 1.4547751, 1.2010975, 0.42651367, 0.23104341, 0.83610827,
      0.8494239,  0.07136688, 0.5623144,  0.8086237, 1.5066161, -4.094787,  0.76887935, -2.4082742};
  std::vector<bst_group_t> groups{0, 7, 16};
  std::vector<float> labels{1., 0., 0., 1., 2., 1., 0., 0., 0., 0., 0., 0., 1., 0., 1., 0.};

  EXPECT_NEAR(GetMetricEval(metric.get(), std::move(predt), labels,
                            /*weights=*/{}, groups, data_split_mode),
              0.769841f, 1e-6);
}

inline void VerifyPRAUC(DataSplitMode data_split_mode, DeviceOrd device) {
  auto ctx = MakeCUDACtx(device.ordinal);

  xgboost::Metric* metric = xgboost::Metric::Create("aucpr", &ctx);
  ASSERT_STREQ(metric->Name(), "aucpr");
  EXPECT_NEAR(GetMetricEval(metric, {0, 0, 1, 1}, {0, 0, 1, 1}, {}, {}, data_split_mode), 1, 1e-10);
  EXPECT_NEAR(
      GetMetricEval(metric, {0.1f, 0.9f, 0.1f, 0.9f}, {0, 0, 1, 1}, {}, {}, data_split_mode), 0.5f,
      0.001f);
  EXPECT_NEAR(GetMetricEval(metric, {0.4f, 0.2f, 0.9f, 0.1f, 0.2f, 0.4f, 0.1f, 0.1f, 0.2f, 0.1f},
                            {0, 0, 0, 0, 0, 1, 0, 0, 1, 1}, {}, {}, data_split_mode),
              0.2908445f, 0.001f);
  EXPECT_NEAR(
      GetMetricEval(metric, {0.87f, 0.31f, 0.40f, 0.42f, 0.25f, 0.66f, 0.95f, 0.09f, 0.10f, 0.97f,
                             0.76f, 0.69f, 0.15f, 0.20f, 0.30f, 0.14f, 0.07f, 0.58f, 0.61f, 0.08f},
                    {0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1}, {}, {},
                    data_split_mode),
      0.2769199f, 0.001f);
  auto auc = GetMetricEval(metric, {0, 1}, {}, {}, {}, data_split_mode);
  ASSERT_TRUE(std::isnan(auc));

  // AUCPR with instance weights
  EXPECT_NEAR(GetMetricEval(metric,
                            {0.29f, 0.52f, 0.11f, 0.21f, 0.219f, 0.93f, 0.493f, 0.17f, 0.47f, 0.13f,
                             0.43f, 0.59f, 0.87f, 0.007f},
                            {0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0},
                            {1, 2, 7, 4, 5, 2.2f, 3.2f, 5, 6, 1, 2, 1.1f, 3.2f, 4.5f},  // weights
                            {}, data_split_mode),
              0.694435f, 0.001f);

  // Both groups contain only pos or neg samples.
  auc = GetMetricEval(metric, {0, 0.1f, 0.3f, 0.5f, 0.7f}, {1, 1, 0, 0, 0}, {}, {0, 2, 5},
                      data_split_mode);
  ASSERT_TRUE(std::isnan(auc));
  delete metric;
}

inline void VerifyMultiClassPRAUC(DataSplitMode data_split_mode, DeviceOrd device) {
  auto ctx = MakeCUDACtx(device.ordinal);

  std::unique_ptr<Metric> metric{Metric::Create("aucpr", &ctx)};

  float auc = 0;
  std::vector<float> labels{1.0f, 0.0f, 2.0f};
  HostDeviceVector<float> predts{
      0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f,
  };
  auc = GetMetricEval(metric.get(), predts, labels, {}, {}, data_split_mode);
  EXPECT_EQ(auc, 1.0f);

  auc = GetMetricEval(metric.get(), predts, labels, {1.0f, 1.0f, 1.0f}, {}, data_split_mode);
  EXPECT_EQ(auc, 1.0f);

  predts.HostVector() = {
      0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,
  };
  labels = {1.0f, 0.0f, 2.0f, 1.0f};
  auc = GetMetricEval(metric.get(), predts, labels, {1.0f, 2.0f, 3.0f, 4.0f}, {}, data_split_mode);
  ASSERT_GT(auc, 0.699);
}

inline void VerifyRankingPRAUC(DataSplitMode data_split_mode, DeviceOrd device) {
  auto ctx = MakeCUDACtx(device.ordinal);

  std::unique_ptr<Metric> metric{Metric::Create("aucpr", &ctx)};

  std::vector<float> labels{1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f};
  std::vector<uint32_t> groups{0, 2, 6};

  float auc = 0;
  auc = GetMetricEval(metric.get(), {1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f}, labels, {}, groups,
                      data_split_mode);
  EXPECT_EQ(auc, 1.0f);

  auc = GetMetricEval(metric.get(), {1.0f, 0.5f, 0.8f, 0.3f, 0.2f, 1.0f}, labels, {}, groups,
                      data_split_mode);
  EXPECT_EQ(auc, 1.0f);

  auc = GetMetricEval(metric.get(), {1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f},
                      {1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f}, {}, groups, data_split_mode);
  ASSERT_TRUE(std::isnan(auc));

  // Incorrect label
  ASSERT_THROW(GetMetricEval(metric.get(), {1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f},
                             {1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 3.0f}, {}, groups, data_split_mode),
               dmlc::Error);

  // AUCPR with groups and no weights
  EXPECT_NEAR(
      GetMetricEval(metric.get(),
                    {0.87f, 0.31f, 0.40f, 0.42f, 0.25f, 0.66f, 0.95f, 0.09f, 0.10f, 0.97f,
                     0.76f, 0.69f, 0.15f, 0.20f, 0.30f, 0.14f, 0.07f, 0.58f, 0.61f, 0.08f},
                    {0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1}, {},  // weights
                    {0, 2, 5, 9, 14, 20},                                              // group info
                    data_split_mode),
      0.556021f, 0.001f);
}
}  // namespace xgboost::metric