File: test_cpu_predictor.cc

package info (click to toggle)
xgboost 3.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 13,796 kB
  • sloc: cpp: 67,502; python: 35,503; java: 4,676; ansic: 1,426; sh: 1,320; xml: 1,197; makefile: 204; javascript: 19
file content (212 lines) | stat: -rw-r--r-- 6,965 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
/**
 * Copyright 2017-2024, XGBoost contributors
 */
#include <gtest/gtest.h>
#include <xgboost/predictor.h>

#include "../../../src/collective/communicator-inl.h"
#include "../../../src/data/adapter.h"
#include "../../../src/data/proxy_dmatrix.h"
#include "../../../src/gbm/gbtree.h"
#include "../../../src/gbm/gbtree_model.h"
#include "../collective/test_worker.h"  // for TestDistributedGlobal
#include "../helpers.h"
#include "test_predictor.h"

namespace xgboost {
TEST(CpuPredictor, Basic) {
  Context ctx;
  size_t constexpr kRows = 5;
  size_t constexpr kCols = 5;
  auto dmat = RandomDataGenerator(kRows, kCols, 0).GenerateDMatrix();
  TestBasic(dmat.get(), &ctx);
}

namespace {
void TestColumnSplit() {
  Context ctx;
  size_t constexpr kRows = 5;
  size_t constexpr kCols = 5;
  auto dmat = RandomDataGenerator(kRows, kCols, 0).GenerateDMatrix();

  auto const world_size = collective::GetWorldSize();
  auto const rank = collective::GetRank();
  dmat = std::unique_ptr<DMatrix>{dmat->SliceCol(world_size, rank)};

  TestBasic(dmat.get(), &ctx);
}
}  // anonymous namespace

TEST(CpuPredictor, BasicColumnSplit) {
  auto constexpr kWorldSize = 2;
  collective::TestDistributedGlobal(kWorldSize, TestColumnSplit);
}

TEST(CpuPredictor, IterationRange) {
  Context ctx;
  TestIterationRange(&ctx);
}

TEST(CpuPredictor, IterationRangeColmnSplit) {
  auto constexpr kWorldSize = 2;
  TestIterationRangeColumnSplit(kWorldSize, false);
}

TEST(CpuPredictor, ExternalMemory) {
  Context ctx;
  bst_idx_t constexpr kRows{64};
  bst_feature_t constexpr kCols{12};
  auto dmat =
      RandomDataGenerator{kRows, kCols, 0.5f}.Batches(3).GenerateSparsePageDMatrix("temp", true);
  TestBasic(dmat.get(), &ctx);
}

TEST_P(ShapExternalMemoryTest, CPUPredictor) {
  Context ctx;
  auto [is_qdm, is_interaction] = this->GetParam();
  this->Run(&ctx, is_qdm, is_interaction);
}

TEST(CpuPredictor, InplacePredict) {
  bst_idx_t constexpr kRows{128};
  bst_feature_t constexpr kCols{64};
  Context ctx;
  auto gen = RandomDataGenerator{kRows, kCols, 0.5}.Device(ctx.Device());
  {
    HostDeviceVector<float> data;
    gen.GenerateDense(&data);
    ASSERT_EQ(data.Size(), kRows * kCols);
    std::shared_ptr<data::DMatrixProxy> x{new data::DMatrixProxy{}};
    auto array_interface = GetArrayInterface(&data, kRows, kCols);
    std::string arr_str;
    Json::Dump(array_interface, &arr_str);
    x->SetArrayData(arr_str.data());
    TestInplacePrediction(&ctx, x, kRows, kCols);
  }

  {
    HostDeviceVector<float> data;
    HostDeviceVector<std::size_t> rptrs;
    HostDeviceVector<bst_feature_t> columns;
    gen.GenerateCSR(&data, &rptrs, &columns);
    auto data_interface = GetArrayInterface(&data, kRows * kCols, 1);
    auto rptr_interface = GetArrayInterface(&rptrs, kRows + 1, 1);
    auto col_interface = GetArrayInterface(&columns, kRows * kCols, 1);
    std::string data_str, rptr_str, col_str;
    Json::Dump(data_interface, &data_str);
    Json::Dump(rptr_interface, &rptr_str);
    Json::Dump(col_interface, &col_str);
    std::shared_ptr<data::DMatrixProxy> x{new data::DMatrixProxy};
    x->SetCSRData(rptr_str.data(), col_str.data(), data_str.data(), kCols, true);
    TestInplacePrediction(&ctx, x, kRows, kCols);
  }
}

namespace {
void TestUpdatePredictionCache(bool use_subsampling) {
  std::size_t constexpr kRows = 64, kCols = 16, kClasses = 4;
  LearnerModelParam mparam{MakeMP(kCols, .0, kClasses)};
  Context ctx;

  std::unique_ptr<gbm::GBTree> gbm;
  gbm.reset(static_cast<gbm::GBTree*>(GradientBooster::Create("gbtree", &ctx, &mparam)));
  Args args{{"tree_method", "hist"}};
  if (use_subsampling) {
    args.emplace_back("subsample", "0.5");
  }
  gbm->Configure(args);

  auto dmat = RandomDataGenerator(kRows, kCols, 0).Classes(kClasses).GenerateDMatrix(true);

  linalg::Matrix<GradientPair> gpair({kRows, kClasses}, ctx.Device());
  auto h_gpair = gpair.HostView();
  for (size_t i = 0; i < kRows * kClasses; ++i) {
    std::apply(h_gpair, linalg::UnravelIndex(i, kRows, kClasses)) = {static_cast<float>(i), 1};
  }

  PredictionCacheEntry predtion_cache;
  predtion_cache.predictions.Resize(kRows * kClasses, 0);
  // after one training iteration predtion_cache is filled with cached in QuantileHistMaker
  // prediction values
  gbm->DoBoost(dmat.get(), &gpair, &predtion_cache, nullptr);

  PredictionCacheEntry out_predictions;
  // perform prediction from scratch on the same input data, should be equal to cached result
  gbm->PredictBatch(dmat.get(), &out_predictions, false, 0, 0);

  std::vector<float>& out_predictions_h = out_predictions.predictions.HostVector();
  std::vector<float>& predtion_cache_from_train = predtion_cache.predictions.HostVector();
  for (size_t i = 0; i < out_predictions_h.size(); ++i) {
    ASSERT_NEAR(out_predictions_h[i], predtion_cache_from_train[i], kRtEps);
  }
}
}  // namespace

TEST(CPUPredictor, GHistIndexTraining) {
  size_t constexpr kRows{128}, kCols{16}, kBins{64};
  Context ctx;
  auto p_hist = RandomDataGenerator{kRows, kCols, 0.0}.Bins(kBins).GenerateQuantileDMatrix(false);
  HostDeviceVector<float> storage(kRows * kCols);
  auto columnar = RandomDataGenerator{kRows, kCols, 0.0}.GenerateArrayInterface(&storage);
  auto adapter = data::ArrayAdapter(columnar.c_str());
  std::shared_ptr<DMatrix> p_full{
      DMatrix::Create(&adapter, std::numeric_limits<float>::quiet_NaN(), 1)};
  TestTrainingPrediction(&ctx, kRows, kBins, p_full, p_hist);
}

TEST(CPUPredictor, CategoricalPrediction) {
  TestCategoricalPrediction(false, false);
}

TEST(CPUPredictor, CategoricalPredictionColumnSplit) {
  auto constexpr kWorldSize = 2;
  collective::TestDistributedGlobal(kWorldSize, [] { TestCategoricalPrediction(false, true); });
}

TEST(CPUPredictor, CategoricalPredictLeaf) {
  Context ctx;
  TestCategoricalPredictLeaf(&ctx, false);
}

TEST(CPUPredictor, CategoricalPredictLeafColumnSplit) {
  auto constexpr kWorldSize = 2;
  Context ctx;
  collective::TestDistributedGlobal(kWorldSize, [&] { TestCategoricalPredictLeaf(&ctx, true); });
}

TEST(CpuPredictor, UpdatePredictionCache) {
  TestUpdatePredictionCache(false);
  TestUpdatePredictionCache(true);
}

TEST(CpuPredictor, LesserFeatures) {
  Context ctx;
  TestPredictionWithLesserFeatures(&ctx);
}

TEST(CpuPredictor, LesserFeaturesColumnSplit) {
  auto constexpr kWorldSize = 2;
  collective::TestDistributedGlobal(kWorldSize,
                                    [] { TestPredictionWithLesserFeaturesColumnSplit(false); });
}

TEST(CpuPredictor, Sparse) {
  Context ctx;
  TestSparsePrediction(&ctx, 0.2);
  TestSparsePrediction(&ctx, 0.8);
}

TEST(CpuPredictor, SparseColumnSplit) {
  auto constexpr kWorldSize = 2;
  TestSparsePredictionColumnSplit(kWorldSize, false, 0.2);
  TestSparsePredictionColumnSplit(kWorldSize, false, 0.8);
}

TEST(CpuPredictor, Multi) {
  Context ctx;
  ctx.nthread = 1;
  TestVectorLeafPrediction(&ctx);
}

TEST(CpuPredictor, Access) { TestPredictionDeviceAccess(); }
}  // namespace xgboost