1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
/**
* Copyright 2017-2024, XGBoost contributors
*/
#include <gtest/gtest.h>
#include <xgboost/predictor.h>
#include "../../../src/collective/communicator-inl.h"
#include "../../../src/data/adapter.h"
#include "../../../src/data/proxy_dmatrix.h"
#include "../../../src/gbm/gbtree.h"
#include "../../../src/gbm/gbtree_model.h"
#include "../collective/test_worker.h" // for TestDistributedGlobal
#include "../helpers.h"
#include "test_predictor.h"
namespace xgboost {
TEST(CpuPredictor, Basic) {
Context ctx;
size_t constexpr kRows = 5;
size_t constexpr kCols = 5;
auto dmat = RandomDataGenerator(kRows, kCols, 0).GenerateDMatrix();
TestBasic(dmat.get(), &ctx);
}
namespace {
void TestColumnSplit() {
Context ctx;
size_t constexpr kRows = 5;
size_t constexpr kCols = 5;
auto dmat = RandomDataGenerator(kRows, kCols, 0).GenerateDMatrix();
auto const world_size = collective::GetWorldSize();
auto const rank = collective::GetRank();
dmat = std::unique_ptr<DMatrix>{dmat->SliceCol(world_size, rank)};
TestBasic(dmat.get(), &ctx);
}
} // anonymous namespace
TEST(CpuPredictor, BasicColumnSplit) {
auto constexpr kWorldSize = 2;
collective::TestDistributedGlobal(kWorldSize, TestColumnSplit);
}
TEST(CpuPredictor, IterationRange) {
Context ctx;
TestIterationRange(&ctx);
}
TEST(CpuPredictor, IterationRangeColmnSplit) {
auto constexpr kWorldSize = 2;
TestIterationRangeColumnSplit(kWorldSize, false);
}
TEST(CpuPredictor, ExternalMemory) {
Context ctx;
bst_idx_t constexpr kRows{64};
bst_feature_t constexpr kCols{12};
auto dmat =
RandomDataGenerator{kRows, kCols, 0.5f}.Batches(3).GenerateSparsePageDMatrix("temp", true);
TestBasic(dmat.get(), &ctx);
}
TEST_P(ShapExternalMemoryTest, CPUPredictor) {
Context ctx;
auto [is_qdm, is_interaction] = this->GetParam();
this->Run(&ctx, is_qdm, is_interaction);
}
TEST(CpuPredictor, InplacePredict) {
bst_idx_t constexpr kRows{128};
bst_feature_t constexpr kCols{64};
Context ctx;
auto gen = RandomDataGenerator{kRows, kCols, 0.5}.Device(ctx.Device());
{
HostDeviceVector<float> data;
gen.GenerateDense(&data);
ASSERT_EQ(data.Size(), kRows * kCols);
std::shared_ptr<data::DMatrixProxy> x{new data::DMatrixProxy{}};
auto array_interface = GetArrayInterface(&data, kRows, kCols);
std::string arr_str;
Json::Dump(array_interface, &arr_str);
x->SetArrayData(arr_str.data());
TestInplacePrediction(&ctx, x, kRows, kCols);
}
{
HostDeviceVector<float> data;
HostDeviceVector<std::size_t> rptrs;
HostDeviceVector<bst_feature_t> columns;
gen.GenerateCSR(&data, &rptrs, &columns);
auto data_interface = GetArrayInterface(&data, kRows * kCols, 1);
auto rptr_interface = GetArrayInterface(&rptrs, kRows + 1, 1);
auto col_interface = GetArrayInterface(&columns, kRows * kCols, 1);
std::string data_str, rptr_str, col_str;
Json::Dump(data_interface, &data_str);
Json::Dump(rptr_interface, &rptr_str);
Json::Dump(col_interface, &col_str);
std::shared_ptr<data::DMatrixProxy> x{new data::DMatrixProxy};
x->SetCSRData(rptr_str.data(), col_str.data(), data_str.data(), kCols, true);
TestInplacePrediction(&ctx, x, kRows, kCols);
}
}
namespace {
void TestUpdatePredictionCache(bool use_subsampling) {
std::size_t constexpr kRows = 64, kCols = 16, kClasses = 4;
LearnerModelParam mparam{MakeMP(kCols, .0, kClasses)};
Context ctx;
std::unique_ptr<gbm::GBTree> gbm;
gbm.reset(static_cast<gbm::GBTree*>(GradientBooster::Create("gbtree", &ctx, &mparam)));
Args args{{"tree_method", "hist"}};
if (use_subsampling) {
args.emplace_back("subsample", "0.5");
}
gbm->Configure(args);
auto dmat = RandomDataGenerator(kRows, kCols, 0).Classes(kClasses).GenerateDMatrix(true);
linalg::Matrix<GradientPair> gpair({kRows, kClasses}, ctx.Device());
auto h_gpair = gpair.HostView();
for (size_t i = 0; i < kRows * kClasses; ++i) {
std::apply(h_gpair, linalg::UnravelIndex(i, kRows, kClasses)) = {static_cast<float>(i), 1};
}
PredictionCacheEntry predtion_cache;
predtion_cache.predictions.Resize(kRows * kClasses, 0);
// after one training iteration predtion_cache is filled with cached in QuantileHistMaker
// prediction values
gbm->DoBoost(dmat.get(), &gpair, &predtion_cache, nullptr);
PredictionCacheEntry out_predictions;
// perform prediction from scratch on the same input data, should be equal to cached result
gbm->PredictBatch(dmat.get(), &out_predictions, false, 0, 0);
std::vector<float>& out_predictions_h = out_predictions.predictions.HostVector();
std::vector<float>& predtion_cache_from_train = predtion_cache.predictions.HostVector();
for (size_t i = 0; i < out_predictions_h.size(); ++i) {
ASSERT_NEAR(out_predictions_h[i], predtion_cache_from_train[i], kRtEps);
}
}
} // namespace
TEST(CPUPredictor, GHistIndexTraining) {
size_t constexpr kRows{128}, kCols{16}, kBins{64};
Context ctx;
auto p_hist = RandomDataGenerator{kRows, kCols, 0.0}.Bins(kBins).GenerateQuantileDMatrix(false);
HostDeviceVector<float> storage(kRows * kCols);
auto columnar = RandomDataGenerator{kRows, kCols, 0.0}.GenerateArrayInterface(&storage);
auto adapter = data::ArrayAdapter(columnar.c_str());
std::shared_ptr<DMatrix> p_full{
DMatrix::Create(&adapter, std::numeric_limits<float>::quiet_NaN(), 1)};
TestTrainingPrediction(&ctx, kRows, kBins, p_full, p_hist);
}
TEST(CPUPredictor, CategoricalPrediction) {
TestCategoricalPrediction(false, false);
}
TEST(CPUPredictor, CategoricalPredictionColumnSplit) {
auto constexpr kWorldSize = 2;
collective::TestDistributedGlobal(kWorldSize, [] { TestCategoricalPrediction(false, true); });
}
TEST(CPUPredictor, CategoricalPredictLeaf) {
Context ctx;
TestCategoricalPredictLeaf(&ctx, false);
}
TEST(CPUPredictor, CategoricalPredictLeafColumnSplit) {
auto constexpr kWorldSize = 2;
Context ctx;
collective::TestDistributedGlobal(kWorldSize, [&] { TestCategoricalPredictLeaf(&ctx, true); });
}
TEST(CpuPredictor, UpdatePredictionCache) {
TestUpdatePredictionCache(false);
TestUpdatePredictionCache(true);
}
TEST(CpuPredictor, LesserFeatures) {
Context ctx;
TestPredictionWithLesserFeatures(&ctx);
}
TEST(CpuPredictor, LesserFeaturesColumnSplit) {
auto constexpr kWorldSize = 2;
collective::TestDistributedGlobal(kWorldSize,
[] { TestPredictionWithLesserFeaturesColumnSplit(false); });
}
TEST(CpuPredictor, Sparse) {
Context ctx;
TestSparsePrediction(&ctx, 0.2);
TestSparsePrediction(&ctx, 0.8);
}
TEST(CpuPredictor, SparseColumnSplit) {
auto constexpr kWorldSize = 2;
TestSparsePredictionColumnSplit(kWorldSize, false, 0.2);
TestSparsePredictionColumnSplit(kWorldSize, false, 0.8);
}
TEST(CpuPredictor, Multi) {
Context ctx;
ctx.nthread = 1;
TestVectorLeafPrediction(&ctx);
}
TEST(CpuPredictor, Access) { TestPredictionDeviceAccess(); }
} // namespace xgboost
|