File: test_predictor.h

package info (click to toggle)
xgboost 3.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 13,796 kB
  • sloc: cpp: 67,502; python: 35,503; java: 4,676; ansic: 1,426; sh: 1,320; xml: 1,197; makefile: 204; javascript: 19
file content (123 lines) | stat: -rw-r--r-- 4,240 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
/**
 * Copyright 2020-2023 by XGBoost Contributors
 */
#ifndef XGBOOST_TEST_PREDICTOR_H_
#define XGBOOST_TEST_PREDICTOR_H_

#include <xgboost/context.h>  // for Context
#include <xgboost/predictor.h>

#include <cstddef>
#include <string>

#include "../../../src/gbm/gbtree_model.h"  // for GBTreeModel
#include "../helpers.h"

namespace xgboost {
inline gbm::GBTreeModel CreateTestModel(LearnerModelParam const* param, Context const* ctx,
                                        size_t n_classes = 1) {
  gbm::GBTreeModel model(param, ctx);

  for (size_t i = 0; i < n_classes; ++i) {
    std::vector<std::unique_ptr<RegTree>> trees;
    trees.push_back(std::unique_ptr<RegTree>(new RegTree));
    if (i == 0) {
      (*trees.back())[0].SetLeaf(1.5f);
      (*trees.back()).Stat(0).sum_hess = 1.0f;
    }
    model.CommitModelGroup(std::move(trees), i);
  }

  return model;
}

inline auto CreatePredictorForTest(Context const* ctx) {
  if (ctx->IsCPU()) {
    return Predictor::Create("cpu_predictor", ctx);
  } else if (ctx->IsSycl()) {
    return Predictor::Create("sycl_predictor", ctx);
  } else {
    return Predictor::Create("gpu_predictor", ctx);
  }
}

// fixme: cpu test
template <typename Page>
void TestPredictionFromGradientIndex(Context const* ctx, size_t rows, size_t cols,
                                     std::shared_ptr<DMatrix> p_hist) {
  constexpr size_t kClasses { 3 };

  LearnerModelParam mparam{MakeMP(cols, .5, kClasses)};
  auto cuda_ctx = MakeCUDACtx(0);

  std::unique_ptr<Predictor> predictor =
      std::unique_ptr<Predictor>(CreatePredictorForTest(&cuda_ctx));
  predictor->Configure({});

  gbm::GBTreeModel model = CreateTestModel(&mparam, ctx, kClasses);

  {
    auto p_precise = RandomDataGenerator(rows, cols, 0).GenerateDMatrix();

    PredictionCacheEntry approx_out_predictions;
    predictor->InitOutPredictions(p_hist->Info(), &approx_out_predictions.predictions, model);
    predictor->PredictBatch(p_hist.get(), &approx_out_predictions, model, 0);

    PredictionCacheEntry precise_out_predictions;
    predictor->InitOutPredictions(p_precise->Info(), &precise_out_predictions.predictions, model);
    predictor->PredictBatch(p_precise.get(), &precise_out_predictions, model, 0);

    for (size_t i = 0; i < rows; ++i) {
      CHECK_EQ(approx_out_predictions.predictions.HostVector()[i],
               precise_out_predictions.predictions.HostVector()[i]);
    }
  }

  {
    // Predictor should never try to create the histogram index by itself.  As only
    // histogram index from training data is valid and predictor doesn't known which
    // matrix is used for training.
    auto p_dmat = RandomDataGenerator(rows, cols, 0).GenerateDMatrix();
    PredictionCacheEntry precise_out_predictions;
    predictor->InitOutPredictions(p_dmat->Info(), &precise_out_predictions.predictions, model);
    predictor->PredictBatch(p_dmat.get(), &precise_out_predictions, model, 0);
    CHECK(!p_dmat->PageExists<Page>());
  }
}

void TestBasic(DMatrix* dmat, Context const * ctx);

// p_full and p_hist should come from the same data set.
void TestTrainingPrediction(Context const* ctx, size_t rows, size_t bins,
                            std::shared_ptr<DMatrix> p_full, std::shared_ptr<DMatrix> p_hist);

void TestInplacePrediction(Context const* ctx, std::shared_ptr<DMatrix> x, bst_idx_t rows,
                           bst_feature_t cols);

void TestPredictionWithLesserFeatures(Context const* ctx);

void TestPredictionDeviceAccess();

void TestCategoricalPrediction(bool use_gpu, bool is_column_split);

void TestPredictionWithLesserFeaturesColumnSplit(bool use_gpu);

void TestCategoricalPredictLeaf(Context const *ctx, bool is_column_split);

void TestIterationRange(Context const* ctx);

void TestIterationRangeColumnSplit(int world_size, bool use_gpu);

void TestSparsePrediction(Context const* ctx, float sparsity);

void TestSparsePredictionColumnSplit(int world_size, bool use_gpu, float sparsity);

void TestVectorLeafPrediction(Context const* ctx);

class ShapExternalMemoryTest : public ::testing::TestWithParam<std::tuple<bool, bool>> {
 public:
  void Run(Context const* ctx, bool is_qdm, bool is_interaction);
};
}  // namespace xgboost

#endif  // XGBOOST_TEST_PREDICTOR_H_