1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
|
/**
* Copyright 2020-2024, XGBoost Contributors
*/
#include <gtest/gtest.h>
#include "../../../../src/data/ellpack_page.cuh"
#include "../../../../src/tree/gpu_hist/gradient_based_sampler.cuh"
#include "../../../../src/tree/param.h"
#include "../../../../src/tree/param.h" // TrainParam
#include "../../helpers.h"
namespace xgboost::tree {
void VerifySampling(size_t page_size, float subsample, int sampling_method,
bool fixed_size_sampling = true, bool check_sum = true) {
constexpr size_t kRows = 4096;
constexpr size_t kCols = 1;
bst_idx_t sample_rows = kRows * subsample;
bst_idx_t n_batches = fixed_size_sampling ? 1 : 4;
auto dmat = RandomDataGenerator{kRows, kCols, 0.0f}.Batches(n_batches).GenerateSparsePageDMatrix(
"temp", true);
auto gpair = GenerateRandomGradients(kRows);
GradientPair sum_gpair{};
for (const auto& gp : gpair.ConstHostVector()) {
sum_gpair += gp;
}
Context ctx{MakeCUDACtx(0)};
gpair.SetDevice(ctx.Device());
auto param = BatchParam{256, tree::TrainParam::DftSparseThreshold()};
auto page = (*dmat->GetBatches<EllpackPage>(&ctx, param).begin()).Impl();
if (page_size != 0) {
EXPECT_NE(page->n_rows, kRows);
}
GradientBasedSampler sampler(&ctx, kRows, param, subsample, sampling_method,
!fixed_size_sampling);
auto sample = sampler.Sample(&ctx, gpair.DeviceSpan(), dmat.get());
if (fixed_size_sampling) {
EXPECT_EQ(sample.p_fmat->Info().num_row_, kRows);
EXPECT_EQ(sample.gpair.size(), kRows);
} else {
EXPECT_NEAR(sample.p_fmat->Info().num_row_, sample_rows, kRows * 0.03f);
EXPECT_NEAR(sample.gpair.size(), sample_rows, kRows * 0.03f);
}
GradientPair sum_sampled_gpair{};
std::vector<GradientPair> sampled_gpair_h(sample.gpair.size());
dh::CopyDeviceSpanToVector(&sampled_gpair_h, sample.gpair);
for (const auto& gp : sampled_gpair_h) {
sum_sampled_gpair += gp;
}
if (check_sum) {
EXPECT_NEAR(sum_gpair.GetGrad(), sum_sampled_gpair.GetGrad(), 0.03f * kRows);
EXPECT_NEAR(sum_gpair.GetHess(), sum_sampled_gpair.GetHess(), 0.03f * kRows);
} else {
EXPECT_NEAR(sum_gpair.GetGrad() / kRows, sum_sampled_gpair.GetGrad() / sample_rows, 0.03f);
EXPECT_NEAR(sum_gpair.GetHess() / kRows, sum_sampled_gpair.GetHess() / sample_rows, 0.03f);
}
}
TEST(GradientBasedSampler, NoSampling) {
constexpr size_t kPageSize = 0;
constexpr float kSubsample = 1.0f;
constexpr int kSamplingMethod = TrainParam::kUniform;
VerifySampling(kPageSize, kSubsample, kSamplingMethod);
}
TEST(GradientBasedSampler, NoSamplingExternalMemory) {
constexpr size_t kRows = 2048;
constexpr size_t kCols = 1;
constexpr float kSubsample = 1.0f;
// Create a DMatrix with multiple batches.
auto dmat =
RandomDataGenerator{kRows, kCols, 0.0f}.Batches(4).GenerateSparsePageDMatrix("temp", true);
auto gpair = GenerateRandomGradients(kRows);
auto ctx = MakeCUDACtx(0);
gpair.SetDevice(ctx.Device());
auto param = BatchParam{256, tree::TrainParam::DftSparseThreshold()};
ASSERT_THAT(
[&] {
GradientBasedSampler sampler(&ctx, kRows, param, kSubsample, TrainParam::kUniform, true);
},
GMockThrow("extmem_single_page"));
}
TEST(GradientBasedSampler, UniformSampling) {
constexpr size_t kPageSize = 0;
constexpr float kSubsample = 0.5;
constexpr int kSamplingMethod = TrainParam::kUniform;
constexpr bool kFixedSizeSampling = true;
constexpr bool kCheckSum = false;
VerifySampling(kPageSize, kSubsample, kSamplingMethod, kFixedSizeSampling, kCheckSum);
}
TEST(GradientBasedSampler, UniformSamplingExternalMemory) {
constexpr size_t kPageSize = 1024;
constexpr float kSubsample = 0.5;
constexpr int kSamplingMethod = TrainParam::kUniform;
constexpr bool kFixedSizeSampling = false;
constexpr bool kCheckSum = false;
VerifySampling(kPageSize, kSubsample, kSamplingMethod, kFixedSizeSampling, kCheckSum);
}
TEST(GradientBasedSampler, GradientBasedSampling) {
constexpr size_t kPageSize = 0;
constexpr float kSubsample = 0.8;
constexpr int kSamplingMethod = TrainParam::kGradientBased;
constexpr bool kFixedSizeSampling = true;
VerifySampling(kPageSize, kSubsample, kSamplingMethod, kFixedSizeSampling);
}
TEST(GradientBasedSampler, GradientBasedSamplingExternalMemory) {
constexpr size_t kPageSize = 1024;
constexpr float kSubsample = 0.8;
constexpr int kSamplingMethod = TrainParam::kGradientBased;
constexpr bool kFixedSizeSampling = false;
VerifySampling(kPageSize, kSubsample, kSamplingMethod, kFixedSizeSampling);
}
} // namespace xgboost::tree
|