File: test_histogram.cu

package info (click to toggle)
xgboost 3.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 13,796 kB
  • sloc: cpp: 67,502; python: 35,503; java: 4,676; ansic: 1,426; sh: 1,320; xml: 1,197; makefile: 204; javascript: 19
file content (516 lines) | stat: -rw-r--r-- 20,982 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
/**
 * Copyright 2020-2024, XGBoost Contributors
 */
#include <gtest/gtest.h>
#include <xgboost/context.h>  // for Context

#include <memory>  // for unique_ptr
#include <vector>  // for vector

#include "../../../../src/tree/gpu_hist/histogram.cuh"
#include "../../../../src/tree/gpu_hist/row_partitioner.cuh"  // for RowPartitioner
#include "../../../../src/tree/hist/param.h"                  // for HistMakerTrainParam
#include "../../../../src/tree/param.h"                       // for TrainParam
#include "../../categorical_helpers.h"                        // for OneHotEncodeFeature
#include "../../helpers.h"
#include "../../histogram_helpers.h"  // for BuildEllpackPage

namespace xgboost::tree {
TEST(Histogram, DeviceHistogramStorage) {
  // Ensures that node allocates correctly after reaching `kStopGrowingSize`.
  auto ctx = MakeCUDACtx(0);
  constexpr size_t kNBins = 128;
  constexpr int kNNodes = 4;
  constexpr size_t kStopGrowing = kNNodes * kNBins * 2u;
  DeviceHistogramStorage histogram{};
  histogram.Reset(&ctx, kNBins, kNNodes);
  for (int i = 0; i < kNNodes; ++i) {
    histogram.AllocateHistograms(&ctx, {i});
  }
  ASSERT_EQ(histogram.Data().size(), kStopGrowing);
  histogram.Reset(&ctx, kNBins, kNNodes);

  // Use allocated memory but do not erase nidx_map.
  for (int i = 0; i < kNNodes; ++i) {
    histogram.AllocateHistograms(&ctx, {i});
  }
  for (int i = 0; i < kNNodes; ++i) {
    ASSERT_TRUE(histogram.HistogramExists(i));
  }

  // Add two new nodes
  histogram.AllocateHistograms(&ctx, {kNNodes});
  histogram.AllocateHistograms(&ctx, {kNNodes + 1});

  // Old cached nodes should still exist
  for (int i = 0; i < kNNodes; ++i) {
    ASSERT_TRUE(histogram.HistogramExists(i));
  }

  // Should be deleted
  ASSERT_FALSE(histogram.HistogramExists(kNNodes));
  // Most recent node should exist
  ASSERT_TRUE(histogram.HistogramExists(kNNodes + 1));

  // Add same node again - should fail
  EXPECT_ANY_THROW(histogram.AllocateHistograms(&ctx, {kNNodes + 1}););
}

TEST(Histogram, SubtractionTrack) {
  auto ctx = MakeCUDACtx(0);

  auto page = BuildEllpackPage(&ctx, 64, 4);
  auto cuts = page->CutsShared();
  FeatureGroups fg{*cuts, true, std::numeric_limits<std::size_t>::max()};
  auto fg_acc = fg.DeviceAccessor(ctx.Device());
  auto n_total_bins = cuts->TotalBins();

  // 2 nodes
  auto max_cached_hist_nodes = 2ull;
  DeviceHistogramBuilder histogram;
  histogram.Reset(&ctx, max_cached_hist_nodes, fg_acc, n_total_bins, false);
  histogram.AllocateHistograms(&ctx, {0, 1, 2});
  GPUExpandEntry root;
  root.nid = 0;
  auto need_build = histogram.SubtractHist(&ctx, {root}, {0}, {1});

  std::vector<GPUExpandEntry> candidates(2);
  candidates[0].nid = 1;
  candidates[1].nid = 2;

  need_build = histogram.SubtractHist(&ctx, candidates, {3, 5}, {4, 6});
  ASSERT_EQ(need_build.size(), 2);
  ASSERT_EQ(need_build[0], 4);
  ASSERT_EQ(need_build[1], 6);
}

std::vector<GradientPairPrecise> GetHostHistGpair() {
  // 24 bins, 3 bins for each feature (column).
  std::vector<GradientPairPrecise> hist_gpair = {
    {0.8314f, 0.7147f}, {1.7989f, 3.7312f}, {3.3846f, 3.4598f},
    {2.9277f, 3.5886f}, {1.8429f, 2.4152f}, {1.2443f, 1.9019f},
    {1.6380f, 2.9174f}, {1.5657f, 2.5107f}, {2.8111f, 2.4776f},
    {2.1322f, 3.0651f}, {3.2927f, 3.8540f}, {0.5899f, 0.9866f},
    {1.5185f, 1.6263f}, {2.0686f, 3.1844f}, {2.4278f, 3.0950f},
    {1.5105f, 2.1403f}, {2.6922f, 4.2217f}, {1.8122f, 1.5437f},
    {0.0000f, 0.0000f}, {4.3245f, 5.7955f}, {1.6903f, 2.1103f},
    {2.4012f, 4.4754f}, {3.6136f, 3.4303f}, {0.0000f, 0.0000f}
  };
  return hist_gpair;
}

void TestBuildHist(bool use_shared_memory_histograms) {
  int const kNRows = 16, kNCols = 8;
  auto ctx = MakeCUDACtx(0);

  auto page = BuildEllpackPage(&ctx, kNRows, kNCols);

  xgboost::SimpleLCG gen;
  xgboost::SimpleRealUniformDistribution<bst_float> dist(0.0f, 1.0f);
  HostDeviceVector<GradientPair> gpair(kNRows);
  for (auto& gp : gpair.HostVector()) {
    float grad = dist(&gen);
    float hess = dist(&gen);
    gp = GradientPair{grad, hess};
  }
  gpair.SetDevice(ctx.Device());

  auto row_partitioner = std::make_unique<RowPartitioner>();
  row_partitioner->Reset(&ctx, kNRows, 0);

  auto quantiser = std::make_unique<GradientQuantiser>(&ctx, gpair.ConstDeviceSpan(), MetaInfo());
  auto shm_size = use_shared_memory_histograms ? dh::MaxSharedMemoryOptin(ctx.Ordinal()) : 0;
  FeatureGroups feature_groups(page->Cuts(), page->IsDenseCompressed(), shm_size);

  DeviceHistogramBuilder builder;
  builder.Reset(&ctx, HistMakerTrainParam::CudaDefaultNodes(),
                feature_groups.DeviceAccessor(ctx.Device()), page->Cuts().TotalBins(),
                !use_shared_memory_histograms);
  builder.AllocateHistograms(&ctx, {0});
  builder.BuildHistogram(ctx.CUDACtx(), page->GetDeviceAccessor(&ctx),
                         feature_groups.DeviceAccessor(ctx.Device()), gpair.DeviceSpan(),
                         row_partitioner->GetRows(0), builder.GetNodeHistogram(0), *quantiser);

  auto node_histogram = builder.GetNodeHistogram(0);

  std::vector<GradientPairInt64> h_result(node_histogram.size());
  dh::CopyDeviceSpanToVector(&h_result, node_histogram);

  std::vector<GradientPairPrecise> solution = GetHostHistGpair();
  for (size_t i = 0; i < h_result.size(); ++i) {
    auto result = quantiser->ToFloatingPoint(h_result[i]);
    ASSERT_NEAR(result.GetGrad(), solution[i].GetGrad(), 0.01f);
    ASSERT_NEAR(result.GetHess(), solution[i].GetHess(), 0.01f);
  }
}

TEST(Histogram, BuildHistGlobalMem) {
  TestBuildHist(false);
}

TEST(Histogram, BuildHistSharedMem) {
  TestBuildHist(true);
}

namespace {
void TestDeterministicHistogram(bool is_dense, std::size_t shm_size, bool force_global) {
  Context ctx = MakeCUDACtx(0);
  size_t constexpr kBins = 256, kCols = 120, kRows = 16384, kRounds = 16;
  float constexpr kLower = -1e-2, kUpper = 1e2;

  float sparsity = is_dense ? 0.0f : 0.5f;
  auto matrix = RandomDataGenerator(kRows, kCols, sparsity).GenerateDMatrix();
  auto batch_param = BatchParam{kBins, tree::TrainParam::DftSparseThreshold()};

  for (auto const& batch : matrix->GetBatches<EllpackPage>(&ctx, batch_param)) {
    auto* page = batch.Impl();

    tree::RowPartitioner row_partitioner;
    row_partitioner.Reset(&ctx, kRows, page->base_rowid);
    auto ridx = row_partitioner.GetRows(0);

    bst_bin_t num_bins = kBins * kCols;
    dh::device_vector<GradientPairInt64> histogram(num_bins);
    auto d_histogram = dh::ToSpan(histogram);
    auto gpair = GenerateRandomGradients(kRows, kLower, kUpper);
    gpair.SetDevice(ctx.Device());

    FeatureGroups feature_groups{page->Cuts(), page->IsDenseCompressed(), shm_size};

    auto quantiser = GradientQuantiser(&ctx, gpair.DeviceSpan(), MetaInfo());
    DeviceHistogramBuilder builder;
    builder.Reset(&ctx, HistMakerTrainParam::CudaDefaultNodes(),
                  feature_groups.DeviceAccessor(ctx.Device()), num_bins, force_global);
    builder.BuildHistogram(ctx.CUDACtx(), page->GetDeviceAccessor(&ctx),
                           feature_groups.DeviceAccessor(ctx.Device()), gpair.DeviceSpan(), ridx,
                           d_histogram, quantiser);

    std::vector<GradientPairInt64> histogram_h(num_bins);
    dh::safe_cuda(cudaMemcpy(histogram_h.data(), d_histogram.data(),
                             num_bins * sizeof(GradientPairInt64), cudaMemcpyDeviceToHost));

    for (std::size_t i = 0; i < kRounds; ++i) {
      dh::device_vector<GradientPairInt64> new_histogram(num_bins);
      auto d_new_histogram = dh::ToSpan(new_histogram);

      auto quantiser = GradientQuantiser(&ctx, gpair.DeviceSpan(), MetaInfo());
      DeviceHistogramBuilder builder;
      builder.Reset(&ctx, HistMakerTrainParam::CudaDefaultNodes(),
                    feature_groups.DeviceAccessor(ctx.Device()), num_bins, force_global);
      builder.BuildHistogram(ctx.CUDACtx(), page->GetDeviceAccessor(&ctx),
                             feature_groups.DeviceAccessor(ctx.Device()), gpair.DeviceSpan(), ridx,
                             d_new_histogram, quantiser);

      std::vector<GradientPairInt64> new_histogram_h(num_bins);
      dh::safe_cuda(cudaMemcpy(new_histogram_h.data(), d_new_histogram.data(),
                               num_bins * sizeof(GradientPairInt64), cudaMemcpyDeviceToHost));
      for (size_t j = 0; j < new_histogram_h.size(); ++j) {
        ASSERT_EQ(new_histogram_h[j].GetQuantisedGrad(), histogram_h[j].GetQuantisedGrad());
        ASSERT_EQ(new_histogram_h[j].GetQuantisedHess(), histogram_h[j].GetQuantisedHess());
      }
    }

    {
      auto gpair = GenerateRandomGradients(kRows, kLower, kUpper);
      gpair.SetDevice(ctx.Device());

      // Use a single feature group to compute the baseline.
      FeatureGroups single_group(page->Cuts());

      dh::device_vector<GradientPairInt64> baseline(num_bins);
      DeviceHistogramBuilder builder;
      // Single group must use global memory.
      builder.Reset(&ctx, HistMakerTrainParam::CudaDefaultNodes(),
                    single_group.DeviceAccessor(ctx.Device()), num_bins, /*force_global=*/true);
      builder.BuildHistogram(ctx.CUDACtx(), page->GetDeviceAccessor(&ctx),
                             single_group.DeviceAccessor(ctx.Device()), gpair.DeviceSpan(), ridx,
                             dh::ToSpan(baseline), quantiser);

      std::vector<GradientPairInt64> baseline_h(num_bins);
      dh::safe_cuda(cudaMemcpy(baseline_h.data(), baseline.data().get(),
                               num_bins * sizeof(GradientPairInt64), cudaMemcpyDeviceToHost));

      for (size_t i = 0; i < baseline.size(); ++i) {
        ASSERT_NEAR(baseline_h[i].GetQuantisedGrad(), histogram_h[i].GetQuantisedGrad(),
                    baseline_h[i].GetQuantisedGrad() * 1e-3);
      }
    }
  }
}

class TestGPUDeterministic : public ::testing::TestWithParam<std::tuple<bool, std::size_t, bool>> {
 protected:
  void Run() {
    auto [is_dense, shm_size, force_global] = this->GetParam();
    if (shm_size > dh::MaxSharedMemoryOptin(0) && !force_global) {
      force_global = true;  // We will have to skip this test to avoid false check in the builder.
    }
    TestDeterministicHistogram(is_dense, shm_size, force_global);
  }
};
}  // anonymous namespace

TEST_P(TestGPUDeterministic, Histogram) { this->Run(); }

INSTANTIATE_TEST_SUITE_P(Histogram, TestGPUDeterministic,
                         ::testing::Combine(::testing::Bool(),
                                            ::testing::Values(48 * 1024, 64 * 1024, 160 * 1024),
                                            ::testing::Bool()));

void ValidateCategoricalHistogram(size_t n_categories, common::Span<GradientPairInt64> onehot,
                                  common::Span<GradientPairInt64> cat) {
  auto cat_sum = std::accumulate(cat.cbegin(), cat.cend(), GradientPairInt64{});
  for (size_t c = 0; c < n_categories; ++c) {
    auto zero = onehot[c * 2];
    auto one = onehot[c * 2 + 1];

    auto chosen = cat[c];
    auto not_chosen = cat_sum - chosen;
    ASSERT_EQ(zero, not_chosen);
    ASSERT_EQ(one, chosen);
  }
}

// Test 1 vs rest categorical histogram is equivalent to one hot encoded data.
void TestGPUHistogramCategorical(size_t num_categories) {
  auto ctx = MakeCUDACtx(0);
  size_t constexpr kRows = 340;
  size_t constexpr kBins = 256;
  auto x = GenerateRandomCategoricalSingleColumn(kRows, num_categories);
  auto cat_m = GetDMatrixFromData(x, kRows, 1);
  cat_m->Info().feature_types.HostVector().push_back(FeatureType::kCategorical);
  auto batch_param = BatchParam{kBins, tree::TrainParam::DftSparseThreshold()};
  tree::RowPartitioner row_partitioner;
  row_partitioner.Reset(&ctx, kRows, 0);
  auto ridx = row_partitioner.GetRows(0);
  dh::device_vector<GradientPairInt64> cat_hist(num_categories);
  auto gpair = GenerateRandomGradients(kRows, 0, 2);
  gpair.SetDevice(DeviceOrd::CUDA(0));
  auto quantiser = GradientQuantiser(&ctx, gpair.DeviceSpan(), MetaInfo());
  /**
   * Generate hist with cat data.
   */
  for (auto const &batch : cat_m->GetBatches<EllpackPage>(&ctx, batch_param)) {
    auto* page = batch.Impl();
    FeatureGroups single_group(page->Cuts());
    DeviceHistogramBuilder builder;
    builder.Reset(&ctx, HistMakerTrainParam::CudaDefaultNodes(),
                  single_group.DeviceAccessor(ctx.Device()), num_categories, false);
    builder.BuildHistogram(ctx.CUDACtx(), page->GetDeviceAccessor(&ctx),
                           single_group.DeviceAccessor(ctx.Device()), gpair.DeviceSpan(), ridx,
                           dh::ToSpan(cat_hist), quantiser);
  }

  /**
   * Generate hist with one hot encoded data.
   */
  auto x_encoded = OneHotEncodeFeature(x, num_categories);
  auto encode_m = GetDMatrixFromData(x_encoded, kRows, num_categories);
  dh::device_vector<GradientPairInt64> encode_hist(2 * num_categories);
  for (auto const &batch : encode_m->GetBatches<EllpackPage>(&ctx, batch_param)) {
    auto* page = batch.Impl();
    FeatureGroups single_group(page->Cuts());
    DeviceHistogramBuilder builder;
    builder.Reset(&ctx, HistMakerTrainParam::CudaDefaultNodes(),
                  single_group.DeviceAccessor(ctx.Device()), encode_hist.size(), false);
    builder.BuildHistogram(ctx.CUDACtx(), page->GetDeviceAccessor(&ctx),
                           single_group.DeviceAccessor(ctx.Device()), gpair.DeviceSpan(), ridx,
                           dh::ToSpan(encode_hist), quantiser);
  }

  std::vector<GradientPairInt64> h_cat_hist(cat_hist.size());
  thrust::copy(cat_hist.begin(), cat_hist.end(), h_cat_hist.begin());

  std::vector<GradientPairInt64> h_encode_hist(encode_hist.size());
  thrust::copy(encode_hist.begin(), encode_hist.end(), h_encode_hist.begin());
  ValidateCategoricalHistogram(num_categories,
                               common::Span<GradientPairInt64>{h_encode_hist},
                               common::Span<GradientPairInt64>{h_cat_hist});
}

TEST(Histogram, GPUHistCategorical) {
  for (size_t num_categories = 2; num_categories < 8; ++num_categories) {
    TestGPUHistogramCategorical(num_categories);
  }
}

namespace {
// Atomic add as type cast for test.
XGBOOST_DEV_INLINE int64_t atomicAdd(int64_t *dst, int64_t src) {  // NOLINT
  uint64_t* u_dst = reinterpret_cast<uint64_t*>(dst);
  uint64_t u_src = *reinterpret_cast<uint64_t*>(&src);
  uint64_t ret = ::atomicAdd(u_dst, u_src);
  return *reinterpret_cast<int64_t*>(&ret);
}
}

void TestAtomicAdd() {
  size_t n_elements = 1024;
  dh::device_vector<int64_t> result_a(1, 0);
  auto d_result_a = result_a.data().get();

  dh::device_vector<int64_t> result_b(1, 0);
  auto d_result_b = result_b.data().get();

  /**
   * Test for simple inputs
   */
  std::vector<int64_t> h_inputs(n_elements);
  for (size_t i = 0; i < h_inputs.size(); ++i) {
    h_inputs[i] = (i % 2 == 0) ? i : -i;
  }
  dh::device_vector<int64_t> inputs(h_inputs);
  auto d_inputs = inputs.data().get();

  dh::LaunchN(n_elements, [=] __device__(size_t i) {
    AtomicAdd64As32(d_result_a, d_inputs[i]);
    atomicAdd(d_result_b, d_inputs[i]);
  });
  ASSERT_EQ(result_a[0], result_b[0]);

  /**
   * Test for positive values that don't fit into 32 bit integer.
   */
  thrust::fill(inputs.begin(), inputs.end(),
               (std::numeric_limits<uint32_t>::max() / 2));
  thrust::fill(result_a.begin(), result_a.end(), 0);
  thrust::fill(result_b.begin(), result_b.end(), 0);
  dh::LaunchN(n_elements, [=] __device__(size_t i) {
    AtomicAdd64As32(d_result_a, d_inputs[i]);
    atomicAdd(d_result_b, d_inputs[i]);
  });
  ASSERT_EQ(result_a[0], result_b[0]);
  ASSERT_GT(result_a[0], std::numeric_limits<uint32_t>::max());
  CHECK_EQ(thrust::reduce(inputs.begin(), inputs.end(), int64_t(0)), result_a[0]);

  /**
   * Test for negative values that don't fit into 32 bit integer.
   */
  thrust::fill(inputs.begin(), inputs.end(),
               (std::numeric_limits<int32_t>::min() / 2));
  thrust::fill(result_a.begin(), result_a.end(), 0);
  thrust::fill(result_b.begin(), result_b.end(), 0);
  dh::LaunchN(n_elements, [=] __device__(size_t i) {
    AtomicAdd64As32(d_result_a, d_inputs[i]);
    atomicAdd(d_result_b, d_inputs[i]);
  });
  ASSERT_EQ(result_a[0], result_b[0]);
  ASSERT_LT(result_a[0], std::numeric_limits<int32_t>::min());
  CHECK_EQ(thrust::reduce(inputs.begin(), inputs.end(), int64_t(0)), result_a[0]);
}

TEST(Histogram, AtomicAddInt64) {
  TestAtomicAdd();
}

TEST(Histogram, Quantiser) {
  auto ctx = MakeCUDACtx(0);
  std::size_t n_samples{16};
  HostDeviceVector<GradientPair> gpair(n_samples, GradientPair{1.0, 1.0});
  gpair.SetDevice(ctx.Device());

  auto quantiser = GradientQuantiser(&ctx, gpair.DeviceSpan(), MetaInfo());
  for (auto v : gpair.ConstHostVector()) {
    auto gh = quantiser.ToFloatingPoint(quantiser.ToFixedPoint(v));
    ASSERT_EQ(gh.GetGrad(), 1.0);
    ASSERT_EQ(gh.GetHess(), 1.0);
  }
}
namespace {
class HistogramExternalMemoryTest : public ::testing::TestWithParam<std::tuple<float, bool>> {
 public:
  void Run(float sparsity, bool force_global) {
    bst_idx_t n_samples{512}, n_features{12}, n_batches{3};
    std::vector<std::unique_ptr<RowPartitioner>> partitioners;
    auto p_fmat = RandomDataGenerator{n_samples, n_features, sparsity}
                      .Batches(n_batches)
                      .GenerateSparsePageDMatrix("cache", true);
    bst_bin_t n_bins = 16;
    BatchParam p{n_bins, TrainParam::DftSparseThreshold()};
    auto ctx = MakeCUDACtx(0);

    std::unique_ptr<FeatureGroups> fg;
    dh::device_vector<GradientPairInt64> single_hist;
    dh::device_vector<GradientPairInt64> multi_hist;

    auto gpair = GenerateRandomGradients(n_samples);
    gpair.SetDevice(ctx.Device());
    auto quantiser = GradientQuantiser{&ctx, gpair.ConstDeviceSpan(), p_fmat->Info()};
    std::shared_ptr<common::HistogramCuts> cuts;

    {
      /**
       * Multi page.
       */
      std::int32_t k{0};
      for (auto const& page : p_fmat->GetBatches<EllpackPage>(&ctx, p)) {
        auto impl = page.Impl();
        if (k == 0) {
          // Initialization
          fg = std::make_unique<FeatureGroups>(impl->Cuts());
          auto init = GradientPairInt64{0, 0};
          multi_hist = decltype(multi_hist)(impl->Cuts().TotalBins(), init);
          single_hist = decltype(single_hist)(impl->Cuts().TotalBins(), init);
          cuts = std::make_shared<common::HistogramCuts>(impl->Cuts());
        }

        partitioners.emplace_back(std::make_unique<RowPartitioner>());
        partitioners.back()->Reset(&ctx, impl->Size(), impl->base_rowid);

        auto ridx = partitioners.at(k)->GetRows(0);
        auto d_histogram = dh::ToSpan(multi_hist);
        DeviceHistogramBuilder builder;
        builder.Reset(&ctx, HistMakerTrainParam::CudaDefaultNodes(),
                      fg->DeviceAccessor(ctx.Device()), d_histogram.size(), force_global);
        builder.BuildHistogram(ctx.CUDACtx(), impl->GetDeviceAccessor(&ctx),
                               fg->DeviceAccessor(ctx.Device()), gpair.ConstDeviceSpan(), ridx,
                               d_histogram, quantiser);
        ++k;
      }
      ASSERT_EQ(k, n_batches);
    }

    {
      /**
       * Single page.
       */
      RowPartitioner partitioner;
      partitioner.Reset(&ctx, p_fmat->Info().num_row_, 0);

      SparsePage concat;
      std::vector<float> hess(p_fmat->Info().num_row_, 1.0f);
      for (auto const& page : p_fmat->GetBatches<SparsePage>()) {
        concat.Push(page);
      }
      EllpackPageImpl page{&ctx, cuts, concat, p_fmat->IsDense(), p_fmat->Info().num_col_, {}};
      auto ridx = partitioner.GetRows(0);
      auto d_histogram = dh::ToSpan(single_hist);
      DeviceHistogramBuilder builder;
      builder.Reset(&ctx, HistMakerTrainParam::CudaDefaultNodes(), fg->DeviceAccessor(ctx.Device()),
                    d_histogram.size(), force_global);
      builder.BuildHistogram(ctx.CUDACtx(), page.GetDeviceAccessor(&ctx),
                             fg->DeviceAccessor(ctx.Device()), gpair.ConstDeviceSpan(), ridx,
                             d_histogram, quantiser);
    }

    std::vector<GradientPairInt64> h_single(single_hist.size());
    thrust::copy(single_hist.begin(), single_hist.end(), h_single.begin());
    std::vector<GradientPairInt64> h_multi(multi_hist.size());
    thrust::copy(multi_hist.begin(), multi_hist.end(), h_multi.begin());

    for (std::size_t i = 0; i < single_hist.size(); ++i) {
      ASSERT_EQ(h_single[i].GetQuantisedGrad(), h_multi[i].GetQuantisedGrad());
      ASSERT_EQ(h_single[i].GetQuantisedHess(), h_multi[i].GetQuantisedHess());
    }
  }
};
}  // namespace

TEST_P(HistogramExternalMemoryTest, ExternalMemory) {
  std::apply(&HistogramExternalMemoryTest::Run, std::tuple_cat(std::make_tuple(this), GetParam()));
}

INSTANTIATE_TEST_SUITE_P(Histogram, HistogramExternalMemoryTest,
                         ::testing::Combine(::testing::Values(0.0f, 0.2f, 0.8f),
                                            ::testing::Bool()));
}  // namespace xgboost::tree