1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
|
/**
* Copyright 2020-2024, XGBoost Contributors
*/
#include <gtest/gtest.h>
#include <xgboost/context.h> // for Context
#include <memory> // for unique_ptr
#include <vector> // for vector
#include "../../../../src/tree/gpu_hist/histogram.cuh"
#include "../../../../src/tree/gpu_hist/row_partitioner.cuh" // for RowPartitioner
#include "../../../../src/tree/hist/param.h" // for HistMakerTrainParam
#include "../../../../src/tree/param.h" // for TrainParam
#include "../../categorical_helpers.h" // for OneHotEncodeFeature
#include "../../helpers.h"
#include "../../histogram_helpers.h" // for BuildEllpackPage
namespace xgboost::tree {
TEST(Histogram, DeviceHistogramStorage) {
// Ensures that node allocates correctly after reaching `kStopGrowingSize`.
auto ctx = MakeCUDACtx(0);
constexpr size_t kNBins = 128;
constexpr int kNNodes = 4;
constexpr size_t kStopGrowing = kNNodes * kNBins * 2u;
DeviceHistogramStorage histogram{};
histogram.Reset(&ctx, kNBins, kNNodes);
for (int i = 0; i < kNNodes; ++i) {
histogram.AllocateHistograms(&ctx, {i});
}
ASSERT_EQ(histogram.Data().size(), kStopGrowing);
histogram.Reset(&ctx, kNBins, kNNodes);
// Use allocated memory but do not erase nidx_map.
for (int i = 0; i < kNNodes; ++i) {
histogram.AllocateHistograms(&ctx, {i});
}
for (int i = 0; i < kNNodes; ++i) {
ASSERT_TRUE(histogram.HistogramExists(i));
}
// Add two new nodes
histogram.AllocateHistograms(&ctx, {kNNodes});
histogram.AllocateHistograms(&ctx, {kNNodes + 1});
// Old cached nodes should still exist
for (int i = 0; i < kNNodes; ++i) {
ASSERT_TRUE(histogram.HistogramExists(i));
}
// Should be deleted
ASSERT_FALSE(histogram.HistogramExists(kNNodes));
// Most recent node should exist
ASSERT_TRUE(histogram.HistogramExists(kNNodes + 1));
// Add same node again - should fail
EXPECT_ANY_THROW(histogram.AllocateHistograms(&ctx, {kNNodes + 1}););
}
TEST(Histogram, SubtractionTrack) {
auto ctx = MakeCUDACtx(0);
auto page = BuildEllpackPage(&ctx, 64, 4);
auto cuts = page->CutsShared();
FeatureGroups fg{*cuts, true, std::numeric_limits<std::size_t>::max()};
auto fg_acc = fg.DeviceAccessor(ctx.Device());
auto n_total_bins = cuts->TotalBins();
// 2 nodes
auto max_cached_hist_nodes = 2ull;
DeviceHistogramBuilder histogram;
histogram.Reset(&ctx, max_cached_hist_nodes, fg_acc, n_total_bins, false);
histogram.AllocateHistograms(&ctx, {0, 1, 2});
GPUExpandEntry root;
root.nid = 0;
auto need_build = histogram.SubtractHist(&ctx, {root}, {0}, {1});
std::vector<GPUExpandEntry> candidates(2);
candidates[0].nid = 1;
candidates[1].nid = 2;
need_build = histogram.SubtractHist(&ctx, candidates, {3, 5}, {4, 6});
ASSERT_EQ(need_build.size(), 2);
ASSERT_EQ(need_build[0], 4);
ASSERT_EQ(need_build[1], 6);
}
std::vector<GradientPairPrecise> GetHostHistGpair() {
// 24 bins, 3 bins for each feature (column).
std::vector<GradientPairPrecise> hist_gpair = {
{0.8314f, 0.7147f}, {1.7989f, 3.7312f}, {3.3846f, 3.4598f},
{2.9277f, 3.5886f}, {1.8429f, 2.4152f}, {1.2443f, 1.9019f},
{1.6380f, 2.9174f}, {1.5657f, 2.5107f}, {2.8111f, 2.4776f},
{2.1322f, 3.0651f}, {3.2927f, 3.8540f}, {0.5899f, 0.9866f},
{1.5185f, 1.6263f}, {2.0686f, 3.1844f}, {2.4278f, 3.0950f},
{1.5105f, 2.1403f}, {2.6922f, 4.2217f}, {1.8122f, 1.5437f},
{0.0000f, 0.0000f}, {4.3245f, 5.7955f}, {1.6903f, 2.1103f},
{2.4012f, 4.4754f}, {3.6136f, 3.4303f}, {0.0000f, 0.0000f}
};
return hist_gpair;
}
void TestBuildHist(bool use_shared_memory_histograms) {
int const kNRows = 16, kNCols = 8;
auto ctx = MakeCUDACtx(0);
auto page = BuildEllpackPage(&ctx, kNRows, kNCols);
xgboost::SimpleLCG gen;
xgboost::SimpleRealUniformDistribution<bst_float> dist(0.0f, 1.0f);
HostDeviceVector<GradientPair> gpair(kNRows);
for (auto& gp : gpair.HostVector()) {
float grad = dist(&gen);
float hess = dist(&gen);
gp = GradientPair{grad, hess};
}
gpair.SetDevice(ctx.Device());
auto row_partitioner = std::make_unique<RowPartitioner>();
row_partitioner->Reset(&ctx, kNRows, 0);
auto quantiser = std::make_unique<GradientQuantiser>(&ctx, gpair.ConstDeviceSpan(), MetaInfo());
auto shm_size = use_shared_memory_histograms ? dh::MaxSharedMemoryOptin(ctx.Ordinal()) : 0;
FeatureGroups feature_groups(page->Cuts(), page->IsDenseCompressed(), shm_size);
DeviceHistogramBuilder builder;
builder.Reset(&ctx, HistMakerTrainParam::CudaDefaultNodes(),
feature_groups.DeviceAccessor(ctx.Device()), page->Cuts().TotalBins(),
!use_shared_memory_histograms);
builder.AllocateHistograms(&ctx, {0});
builder.BuildHistogram(ctx.CUDACtx(), page->GetDeviceAccessor(&ctx),
feature_groups.DeviceAccessor(ctx.Device()), gpair.DeviceSpan(),
row_partitioner->GetRows(0), builder.GetNodeHistogram(0), *quantiser);
auto node_histogram = builder.GetNodeHistogram(0);
std::vector<GradientPairInt64> h_result(node_histogram.size());
dh::CopyDeviceSpanToVector(&h_result, node_histogram);
std::vector<GradientPairPrecise> solution = GetHostHistGpair();
for (size_t i = 0; i < h_result.size(); ++i) {
auto result = quantiser->ToFloatingPoint(h_result[i]);
ASSERT_NEAR(result.GetGrad(), solution[i].GetGrad(), 0.01f);
ASSERT_NEAR(result.GetHess(), solution[i].GetHess(), 0.01f);
}
}
TEST(Histogram, BuildHistGlobalMem) {
TestBuildHist(false);
}
TEST(Histogram, BuildHistSharedMem) {
TestBuildHist(true);
}
namespace {
void TestDeterministicHistogram(bool is_dense, std::size_t shm_size, bool force_global) {
Context ctx = MakeCUDACtx(0);
size_t constexpr kBins = 256, kCols = 120, kRows = 16384, kRounds = 16;
float constexpr kLower = -1e-2, kUpper = 1e2;
float sparsity = is_dense ? 0.0f : 0.5f;
auto matrix = RandomDataGenerator(kRows, kCols, sparsity).GenerateDMatrix();
auto batch_param = BatchParam{kBins, tree::TrainParam::DftSparseThreshold()};
for (auto const& batch : matrix->GetBatches<EllpackPage>(&ctx, batch_param)) {
auto* page = batch.Impl();
tree::RowPartitioner row_partitioner;
row_partitioner.Reset(&ctx, kRows, page->base_rowid);
auto ridx = row_partitioner.GetRows(0);
bst_bin_t num_bins = kBins * kCols;
dh::device_vector<GradientPairInt64> histogram(num_bins);
auto d_histogram = dh::ToSpan(histogram);
auto gpair = GenerateRandomGradients(kRows, kLower, kUpper);
gpair.SetDevice(ctx.Device());
FeatureGroups feature_groups{page->Cuts(), page->IsDenseCompressed(), shm_size};
auto quantiser = GradientQuantiser(&ctx, gpair.DeviceSpan(), MetaInfo());
DeviceHistogramBuilder builder;
builder.Reset(&ctx, HistMakerTrainParam::CudaDefaultNodes(),
feature_groups.DeviceAccessor(ctx.Device()), num_bins, force_global);
builder.BuildHistogram(ctx.CUDACtx(), page->GetDeviceAccessor(&ctx),
feature_groups.DeviceAccessor(ctx.Device()), gpair.DeviceSpan(), ridx,
d_histogram, quantiser);
std::vector<GradientPairInt64> histogram_h(num_bins);
dh::safe_cuda(cudaMemcpy(histogram_h.data(), d_histogram.data(),
num_bins * sizeof(GradientPairInt64), cudaMemcpyDeviceToHost));
for (std::size_t i = 0; i < kRounds; ++i) {
dh::device_vector<GradientPairInt64> new_histogram(num_bins);
auto d_new_histogram = dh::ToSpan(new_histogram);
auto quantiser = GradientQuantiser(&ctx, gpair.DeviceSpan(), MetaInfo());
DeviceHistogramBuilder builder;
builder.Reset(&ctx, HistMakerTrainParam::CudaDefaultNodes(),
feature_groups.DeviceAccessor(ctx.Device()), num_bins, force_global);
builder.BuildHistogram(ctx.CUDACtx(), page->GetDeviceAccessor(&ctx),
feature_groups.DeviceAccessor(ctx.Device()), gpair.DeviceSpan(), ridx,
d_new_histogram, quantiser);
std::vector<GradientPairInt64> new_histogram_h(num_bins);
dh::safe_cuda(cudaMemcpy(new_histogram_h.data(), d_new_histogram.data(),
num_bins * sizeof(GradientPairInt64), cudaMemcpyDeviceToHost));
for (size_t j = 0; j < new_histogram_h.size(); ++j) {
ASSERT_EQ(new_histogram_h[j].GetQuantisedGrad(), histogram_h[j].GetQuantisedGrad());
ASSERT_EQ(new_histogram_h[j].GetQuantisedHess(), histogram_h[j].GetQuantisedHess());
}
}
{
auto gpair = GenerateRandomGradients(kRows, kLower, kUpper);
gpair.SetDevice(ctx.Device());
// Use a single feature group to compute the baseline.
FeatureGroups single_group(page->Cuts());
dh::device_vector<GradientPairInt64> baseline(num_bins);
DeviceHistogramBuilder builder;
// Single group must use global memory.
builder.Reset(&ctx, HistMakerTrainParam::CudaDefaultNodes(),
single_group.DeviceAccessor(ctx.Device()), num_bins, /*force_global=*/true);
builder.BuildHistogram(ctx.CUDACtx(), page->GetDeviceAccessor(&ctx),
single_group.DeviceAccessor(ctx.Device()), gpair.DeviceSpan(), ridx,
dh::ToSpan(baseline), quantiser);
std::vector<GradientPairInt64> baseline_h(num_bins);
dh::safe_cuda(cudaMemcpy(baseline_h.data(), baseline.data().get(),
num_bins * sizeof(GradientPairInt64), cudaMemcpyDeviceToHost));
for (size_t i = 0; i < baseline.size(); ++i) {
ASSERT_NEAR(baseline_h[i].GetQuantisedGrad(), histogram_h[i].GetQuantisedGrad(),
baseline_h[i].GetQuantisedGrad() * 1e-3);
}
}
}
}
class TestGPUDeterministic : public ::testing::TestWithParam<std::tuple<bool, std::size_t, bool>> {
protected:
void Run() {
auto [is_dense, shm_size, force_global] = this->GetParam();
if (shm_size > dh::MaxSharedMemoryOptin(0) && !force_global) {
force_global = true; // We will have to skip this test to avoid false check in the builder.
}
TestDeterministicHistogram(is_dense, shm_size, force_global);
}
};
} // anonymous namespace
TEST_P(TestGPUDeterministic, Histogram) { this->Run(); }
INSTANTIATE_TEST_SUITE_P(Histogram, TestGPUDeterministic,
::testing::Combine(::testing::Bool(),
::testing::Values(48 * 1024, 64 * 1024, 160 * 1024),
::testing::Bool()));
void ValidateCategoricalHistogram(size_t n_categories, common::Span<GradientPairInt64> onehot,
common::Span<GradientPairInt64> cat) {
auto cat_sum = std::accumulate(cat.cbegin(), cat.cend(), GradientPairInt64{});
for (size_t c = 0; c < n_categories; ++c) {
auto zero = onehot[c * 2];
auto one = onehot[c * 2 + 1];
auto chosen = cat[c];
auto not_chosen = cat_sum - chosen;
ASSERT_EQ(zero, not_chosen);
ASSERT_EQ(one, chosen);
}
}
// Test 1 vs rest categorical histogram is equivalent to one hot encoded data.
void TestGPUHistogramCategorical(size_t num_categories) {
auto ctx = MakeCUDACtx(0);
size_t constexpr kRows = 340;
size_t constexpr kBins = 256;
auto x = GenerateRandomCategoricalSingleColumn(kRows, num_categories);
auto cat_m = GetDMatrixFromData(x, kRows, 1);
cat_m->Info().feature_types.HostVector().push_back(FeatureType::kCategorical);
auto batch_param = BatchParam{kBins, tree::TrainParam::DftSparseThreshold()};
tree::RowPartitioner row_partitioner;
row_partitioner.Reset(&ctx, kRows, 0);
auto ridx = row_partitioner.GetRows(0);
dh::device_vector<GradientPairInt64> cat_hist(num_categories);
auto gpair = GenerateRandomGradients(kRows, 0, 2);
gpair.SetDevice(DeviceOrd::CUDA(0));
auto quantiser = GradientQuantiser(&ctx, gpair.DeviceSpan(), MetaInfo());
/**
* Generate hist with cat data.
*/
for (auto const &batch : cat_m->GetBatches<EllpackPage>(&ctx, batch_param)) {
auto* page = batch.Impl();
FeatureGroups single_group(page->Cuts());
DeviceHistogramBuilder builder;
builder.Reset(&ctx, HistMakerTrainParam::CudaDefaultNodes(),
single_group.DeviceAccessor(ctx.Device()), num_categories, false);
builder.BuildHistogram(ctx.CUDACtx(), page->GetDeviceAccessor(&ctx),
single_group.DeviceAccessor(ctx.Device()), gpair.DeviceSpan(), ridx,
dh::ToSpan(cat_hist), quantiser);
}
/**
* Generate hist with one hot encoded data.
*/
auto x_encoded = OneHotEncodeFeature(x, num_categories);
auto encode_m = GetDMatrixFromData(x_encoded, kRows, num_categories);
dh::device_vector<GradientPairInt64> encode_hist(2 * num_categories);
for (auto const &batch : encode_m->GetBatches<EllpackPage>(&ctx, batch_param)) {
auto* page = batch.Impl();
FeatureGroups single_group(page->Cuts());
DeviceHistogramBuilder builder;
builder.Reset(&ctx, HistMakerTrainParam::CudaDefaultNodes(),
single_group.DeviceAccessor(ctx.Device()), encode_hist.size(), false);
builder.BuildHistogram(ctx.CUDACtx(), page->GetDeviceAccessor(&ctx),
single_group.DeviceAccessor(ctx.Device()), gpair.DeviceSpan(), ridx,
dh::ToSpan(encode_hist), quantiser);
}
std::vector<GradientPairInt64> h_cat_hist(cat_hist.size());
thrust::copy(cat_hist.begin(), cat_hist.end(), h_cat_hist.begin());
std::vector<GradientPairInt64> h_encode_hist(encode_hist.size());
thrust::copy(encode_hist.begin(), encode_hist.end(), h_encode_hist.begin());
ValidateCategoricalHistogram(num_categories,
common::Span<GradientPairInt64>{h_encode_hist},
common::Span<GradientPairInt64>{h_cat_hist});
}
TEST(Histogram, GPUHistCategorical) {
for (size_t num_categories = 2; num_categories < 8; ++num_categories) {
TestGPUHistogramCategorical(num_categories);
}
}
namespace {
// Atomic add as type cast for test.
XGBOOST_DEV_INLINE int64_t atomicAdd(int64_t *dst, int64_t src) { // NOLINT
uint64_t* u_dst = reinterpret_cast<uint64_t*>(dst);
uint64_t u_src = *reinterpret_cast<uint64_t*>(&src);
uint64_t ret = ::atomicAdd(u_dst, u_src);
return *reinterpret_cast<int64_t*>(&ret);
}
}
void TestAtomicAdd() {
size_t n_elements = 1024;
dh::device_vector<int64_t> result_a(1, 0);
auto d_result_a = result_a.data().get();
dh::device_vector<int64_t> result_b(1, 0);
auto d_result_b = result_b.data().get();
/**
* Test for simple inputs
*/
std::vector<int64_t> h_inputs(n_elements);
for (size_t i = 0; i < h_inputs.size(); ++i) {
h_inputs[i] = (i % 2 == 0) ? i : -i;
}
dh::device_vector<int64_t> inputs(h_inputs);
auto d_inputs = inputs.data().get();
dh::LaunchN(n_elements, [=] __device__(size_t i) {
AtomicAdd64As32(d_result_a, d_inputs[i]);
atomicAdd(d_result_b, d_inputs[i]);
});
ASSERT_EQ(result_a[0], result_b[0]);
/**
* Test for positive values that don't fit into 32 bit integer.
*/
thrust::fill(inputs.begin(), inputs.end(),
(std::numeric_limits<uint32_t>::max() / 2));
thrust::fill(result_a.begin(), result_a.end(), 0);
thrust::fill(result_b.begin(), result_b.end(), 0);
dh::LaunchN(n_elements, [=] __device__(size_t i) {
AtomicAdd64As32(d_result_a, d_inputs[i]);
atomicAdd(d_result_b, d_inputs[i]);
});
ASSERT_EQ(result_a[0], result_b[0]);
ASSERT_GT(result_a[0], std::numeric_limits<uint32_t>::max());
CHECK_EQ(thrust::reduce(inputs.begin(), inputs.end(), int64_t(0)), result_a[0]);
/**
* Test for negative values that don't fit into 32 bit integer.
*/
thrust::fill(inputs.begin(), inputs.end(),
(std::numeric_limits<int32_t>::min() / 2));
thrust::fill(result_a.begin(), result_a.end(), 0);
thrust::fill(result_b.begin(), result_b.end(), 0);
dh::LaunchN(n_elements, [=] __device__(size_t i) {
AtomicAdd64As32(d_result_a, d_inputs[i]);
atomicAdd(d_result_b, d_inputs[i]);
});
ASSERT_EQ(result_a[0], result_b[0]);
ASSERT_LT(result_a[0], std::numeric_limits<int32_t>::min());
CHECK_EQ(thrust::reduce(inputs.begin(), inputs.end(), int64_t(0)), result_a[0]);
}
TEST(Histogram, AtomicAddInt64) {
TestAtomicAdd();
}
TEST(Histogram, Quantiser) {
auto ctx = MakeCUDACtx(0);
std::size_t n_samples{16};
HostDeviceVector<GradientPair> gpair(n_samples, GradientPair{1.0, 1.0});
gpair.SetDevice(ctx.Device());
auto quantiser = GradientQuantiser(&ctx, gpair.DeviceSpan(), MetaInfo());
for (auto v : gpair.ConstHostVector()) {
auto gh = quantiser.ToFloatingPoint(quantiser.ToFixedPoint(v));
ASSERT_EQ(gh.GetGrad(), 1.0);
ASSERT_EQ(gh.GetHess(), 1.0);
}
}
namespace {
class HistogramExternalMemoryTest : public ::testing::TestWithParam<std::tuple<float, bool>> {
public:
void Run(float sparsity, bool force_global) {
bst_idx_t n_samples{512}, n_features{12}, n_batches{3};
std::vector<std::unique_ptr<RowPartitioner>> partitioners;
auto p_fmat = RandomDataGenerator{n_samples, n_features, sparsity}
.Batches(n_batches)
.GenerateSparsePageDMatrix("cache", true);
bst_bin_t n_bins = 16;
BatchParam p{n_bins, TrainParam::DftSparseThreshold()};
auto ctx = MakeCUDACtx(0);
std::unique_ptr<FeatureGroups> fg;
dh::device_vector<GradientPairInt64> single_hist;
dh::device_vector<GradientPairInt64> multi_hist;
auto gpair = GenerateRandomGradients(n_samples);
gpair.SetDevice(ctx.Device());
auto quantiser = GradientQuantiser{&ctx, gpair.ConstDeviceSpan(), p_fmat->Info()};
std::shared_ptr<common::HistogramCuts> cuts;
{
/**
* Multi page.
*/
std::int32_t k{0};
for (auto const& page : p_fmat->GetBatches<EllpackPage>(&ctx, p)) {
auto impl = page.Impl();
if (k == 0) {
// Initialization
fg = std::make_unique<FeatureGroups>(impl->Cuts());
auto init = GradientPairInt64{0, 0};
multi_hist = decltype(multi_hist)(impl->Cuts().TotalBins(), init);
single_hist = decltype(single_hist)(impl->Cuts().TotalBins(), init);
cuts = std::make_shared<common::HistogramCuts>(impl->Cuts());
}
partitioners.emplace_back(std::make_unique<RowPartitioner>());
partitioners.back()->Reset(&ctx, impl->Size(), impl->base_rowid);
auto ridx = partitioners.at(k)->GetRows(0);
auto d_histogram = dh::ToSpan(multi_hist);
DeviceHistogramBuilder builder;
builder.Reset(&ctx, HistMakerTrainParam::CudaDefaultNodes(),
fg->DeviceAccessor(ctx.Device()), d_histogram.size(), force_global);
builder.BuildHistogram(ctx.CUDACtx(), impl->GetDeviceAccessor(&ctx),
fg->DeviceAccessor(ctx.Device()), gpair.ConstDeviceSpan(), ridx,
d_histogram, quantiser);
++k;
}
ASSERT_EQ(k, n_batches);
}
{
/**
* Single page.
*/
RowPartitioner partitioner;
partitioner.Reset(&ctx, p_fmat->Info().num_row_, 0);
SparsePage concat;
std::vector<float> hess(p_fmat->Info().num_row_, 1.0f);
for (auto const& page : p_fmat->GetBatches<SparsePage>()) {
concat.Push(page);
}
EllpackPageImpl page{&ctx, cuts, concat, p_fmat->IsDense(), p_fmat->Info().num_col_, {}};
auto ridx = partitioner.GetRows(0);
auto d_histogram = dh::ToSpan(single_hist);
DeviceHistogramBuilder builder;
builder.Reset(&ctx, HistMakerTrainParam::CudaDefaultNodes(), fg->DeviceAccessor(ctx.Device()),
d_histogram.size(), force_global);
builder.BuildHistogram(ctx.CUDACtx(), page.GetDeviceAccessor(&ctx),
fg->DeviceAccessor(ctx.Device()), gpair.ConstDeviceSpan(), ridx,
d_histogram, quantiser);
}
std::vector<GradientPairInt64> h_single(single_hist.size());
thrust::copy(single_hist.begin(), single_hist.end(), h_single.begin());
std::vector<GradientPairInt64> h_multi(multi_hist.size());
thrust::copy(multi_hist.begin(), multi_hist.end(), h_multi.begin());
for (std::size_t i = 0; i < single_hist.size(); ++i) {
ASSERT_EQ(h_single[i].GetQuantisedGrad(), h_multi[i].GetQuantisedGrad());
ASSERT_EQ(h_single[i].GetQuantisedHess(), h_multi[i].GetQuantisedHess());
}
}
};
} // namespace
TEST_P(HistogramExternalMemoryTest, ExternalMemory) {
std::apply(&HistogramExternalMemoryTest::Run, std::tuple_cat(std::make_tuple(this), GetParam()));
}
INSTANTIATE_TEST_SUITE_P(Histogram, HistogramExternalMemoryTest,
::testing::Combine(::testing::Values(0.0f, 0.2f, 0.8f),
::testing::Bool()));
} // namespace xgboost::tree
|