1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
|
/**
* Copyright 2018-2023 by Contributors
*/
#include <gtest/gtest.h>
#include <xgboost/base.h> // for bst_node_t, bst_bin_t, Gradient...
#include <xgboost/context.h> // for Context
#include <xgboost/data.h> // for BatchIterator, BatchSet, DMatrix
#include <xgboost/host_device_vector.h> // for HostDeviceVector
#include <xgboost/linalg.h> // for MakeTensorView
#include <xgboost/logging.h> // for Error, LogCheck_EQ, LogCheck_LT
#include <xgboost/span.h> // for Span, operator!=
#include <xgboost/tree_model.h> // for RegTree
#include <algorithm> // for max
#include <cstddef> // for size_t
#include <cstdint> // for int32_t, uint32_t
#include <iterator> // for back_inserter
#include <limits> // for numeric_limits
#include <memory> // for shared_ptr, allocator, unique_ptr
#include <numeric> // for iota, accumulate
#include <vector> // for vector
#include "../../../../src/collective/communicator-inl.h" // for GetRank, GetWorldSize
#include "../../../../src/common/hist_util.h" // for GHistRow, HistogramCuts, Sketch...
#include "../../../../src/common/ref_resource_view.h" // for RefResourceView
#include "../../../../src/common/row_set.h" // for RowSetCollection
#include "../../../../src/common/threading_utils.h" // for BlockedSpace2d
#include "../../../../src/data/gradient_index.h" // for GHistIndexMatrix
#include "../../../../src/tree/common_row_partitioner.h" // for CommonRowPartitioner
#include "../../../../src/tree/hist/expand_entry.h" // for CPUExpandEntry
#include "../../../../src/tree/hist/hist_cache.h" // for BoundedHistCollection
#include "../../../../src/tree/hist/histogram.h" // for HistogramBuilder
#include "../../../../src/tree/hist/param.h" // for HistMakerTrainParam
#include "../../categorical_helpers.h" // for OneHotEncodeFeature
#include "../../collective/test_worker.h" // for TestDistributedGlobal
#include "../../helpers.h" // for RandomDataGenerator, GenerateRa...
namespace xgboost::tree {
namespace {
void InitRowPartitionForTest(common::RowSetCollection *row_set, size_t n_samples, size_t base_rowid = 0) {
auto &row_indices = *row_set->Data();
row_indices.resize(n_samples);
std::iota(row_indices.begin(), row_indices.end(), base_rowid);
row_set->Init();
}
} // anonymous namespace
void TestAddHistRows(bool is_distributed) {
Context ctx;
std::vector<bst_node_t> nodes_to_build;
std::vector<bst_node_t> nodes_to_sub;
size_t constexpr kNRows = 8, kNCols = 16;
int32_t constexpr kMaxBins = 4;
auto p_fmat = RandomDataGenerator(kNRows, kNCols, 0.8).Seed(3).GenerateDMatrix();
auto const &gmat =
*(p_fmat->GetBatches<GHistIndexMatrix>(&ctx, BatchParam{kMaxBins, 0.5}).begin());
RegTree tree;
tree.ExpandNode(0, 0, 0, false, 0, 0, 0, 0, 0, 0, 0);
tree.ExpandNode(tree[0].LeftChild(), 0, 0, false, 0, 0, 0, 0, 0, 0, 0);
tree.ExpandNode(tree[0].RightChild(), 0, 0, false, 0, 0, 0, 0, 0, 0, 0);
nodes_to_build.emplace_back(3);
nodes_to_build.emplace_back(4);
nodes_to_sub.emplace_back(5);
nodes_to_sub.emplace_back(6);
HistMakerTrainParam hist_param;
HistogramBuilder histogram_builder;
histogram_builder.Reset(&ctx, gmat.cut.TotalBins(), {kMaxBins, 0.5}, is_distributed, false,
&hist_param);
histogram_builder.AddHistRows(&tree, &nodes_to_build, &nodes_to_sub, false);
for (bst_node_t const &nidx : nodes_to_build) {
ASSERT_TRUE(histogram_builder.Histogram().HistogramExists(nidx));
}
for (bst_node_t const &nidx : nodes_to_sub) {
ASSERT_TRUE(histogram_builder.Histogram().HistogramExists(nidx));
}
}
TEST(CPUHistogram, AddRows) {
TestAddHistRows(true);
TestAddHistRows(false);
}
void TestSyncHist(bool is_distributed) {
std::size_t constexpr kNRows = 8, kNCols = 16;
bst_bin_t constexpr kMaxBins = 4;
Context ctx;
std::vector<bst_bin_t> nodes_for_explicit_hist_build;
std::vector<bst_bin_t> nodes_for_subtraction_trick;
RegTree tree;
auto p_fmat = RandomDataGenerator(kNRows, kNCols, 0.8).Seed(3).GenerateDMatrix();
auto const &gmat =
*(p_fmat->GetBatches<GHistIndexMatrix>(&ctx, BatchParam{kMaxBins, 0.5}).begin());
HistogramBuilder histogram;
uint32_t total_bins = gmat.cut.Ptrs().back();
HistMakerTrainParam hist_param;
histogram.Reset(&ctx, total_bins, {kMaxBins, 0.5}, is_distributed, false, &hist_param);
common::RowSetCollection row_set_collection;
{
row_set_collection.Clear();
std::vector<bst_idx_t> &row_indices = *row_set_collection.Data();
row_indices.resize(kNRows);
std::iota(row_indices.begin(), row_indices.end(), 0);
row_set_collection.Init();
}
// level 0
nodes_for_explicit_hist_build.emplace_back(0);
histogram.AddHistRows(&tree, &nodes_for_explicit_hist_build, &nodes_for_subtraction_trick, false);
tree.ExpandNode(0, 0, 0, false, 0, 0, 0, 0, 0, 0, 0);
nodes_for_explicit_hist_build.clear();
nodes_for_subtraction_trick.clear();
// level 1
nodes_for_explicit_hist_build.emplace_back(tree[0].LeftChild());
nodes_for_subtraction_trick.emplace_back(tree[0].RightChild());
histogram.AddHistRows(&tree, &nodes_for_explicit_hist_build, &nodes_for_subtraction_trick, false);
tree.ExpandNode(tree[0].LeftChild(), 0, 0, false, 0, 0, 0, 0, 0, 0, 0);
tree.ExpandNode(tree[0].RightChild(), 0, 0, false, 0, 0, 0, 0, 0, 0, 0);
nodes_for_explicit_hist_build.clear();
nodes_for_subtraction_trick.clear();
// level 2
nodes_for_explicit_hist_build.emplace_back(3);
nodes_for_subtraction_trick.emplace_back(4);
nodes_for_explicit_hist_build.emplace_back(5);
nodes_for_subtraction_trick.emplace_back(6);
histogram.AddHistRows(&tree, &nodes_for_explicit_hist_build, &nodes_for_subtraction_trick, false);
const size_t n_nodes = nodes_for_explicit_hist_build.size();
ASSERT_EQ(n_nodes, 2ul);
row_set_collection.AddSplit(0, tree[0].LeftChild(), tree[0].RightChild(), 4, 4);
row_set_collection.AddSplit(1, tree[1].LeftChild(), tree[1].RightChild(), 2, 2);
row_set_collection.AddSplit(2, tree[2].LeftChild(), tree[2].RightChild(), 2, 2);
common::BlockedSpace2d space(
n_nodes,
[&](std::size_t nidx_in_set) {
bst_node_t nidx = nodes_for_explicit_hist_build[nidx_in_set];
return row_set_collection[nidx].Size();
},
256);
std::vector<common::GHistRow> target_hists(n_nodes);
for (size_t i = 0; i < nodes_for_explicit_hist_build.size(); ++i) {
bst_node_t nidx = nodes_for_explicit_hist_build[i];
target_hists[i] = histogram.Histogram()[nidx];
}
// set values to specific nodes hist
std::vector<size_t> n_ids = {1, 2};
for (size_t i : n_ids) {
auto this_hist = histogram.Histogram()[i];
double *p_hist = reinterpret_cast<double *>(this_hist.data());
for (size_t bin_id = 0; bin_id < 2 * total_bins; ++bin_id) {
p_hist[bin_id] = 2 * bin_id;
}
}
n_ids[0] = 3;
n_ids[1] = 5;
for (size_t i : n_ids) {
auto this_hist = histogram.Histogram()[i];
double *p_hist = reinterpret_cast<double *>(this_hist.data());
for (size_t bin_id = 0; bin_id < 2 * total_bins; ++bin_id) {
p_hist[bin_id] = bin_id;
}
}
histogram.Buffer().Reset(1, n_nodes, space, target_hists);
// sync hist
histogram.SyncHistogram(&ctx, &tree, nodes_for_explicit_hist_build, nodes_for_subtraction_trick);
using GHistRowT = common::GHistRow;
auto check_hist = [](const GHistRowT parent, const GHistRowT left, const GHistRowT right,
size_t begin, size_t end) {
const double *p_parent = reinterpret_cast<const double *>(parent.data());
const double *p_left = reinterpret_cast<const double *>(left.data());
const double *p_right = reinterpret_cast<const double *>(right.data());
for (size_t i = 2 * begin; i < 2 * end; ++i) {
ASSERT_EQ(p_parent[i], p_left[i] + p_right[i]);
}
};
size_t node_id = 0;
for (auto const &nidx : nodes_for_explicit_hist_build) {
auto this_hist = histogram.Histogram()[nidx];
const size_t parent_id = tree[nidx].Parent();
const size_t subtraction_node_id = nodes_for_subtraction_trick[node_id];
auto parent_hist = histogram.Histogram()[parent_id];
auto sibling_hist = histogram.Histogram()[subtraction_node_id];
check_hist(parent_hist, this_hist, sibling_hist, 0, total_bins);
++node_id;
}
node_id = 0;
for (auto const &nidx : nodes_for_subtraction_trick) {
auto this_hist = histogram.Histogram()[nidx];
const size_t parent_id = tree[nidx].Parent();
const size_t subtraction_node_id = nodes_for_explicit_hist_build[node_id];
auto parent_hist = histogram.Histogram()[parent_id];
auto sibling_hist = histogram.Histogram()[subtraction_node_id];
check_hist(parent_hist, this_hist, sibling_hist, 0, total_bins);
++node_id;
}
}
TEST(CPUHistogram, SyncHist) {
TestSyncHist(true);
TestSyncHist(false);
}
void TestBuildHistogram(Context const* ctx, bool is_distributed, bool force_read_by_column, bool is_col_split) {
size_t constexpr kNRows = 8, kNCols = 16;
int32_t constexpr kMaxBins = 4;
auto p_fmat =
RandomDataGenerator(kNRows, kNCols, 0.8).Seed(3).GenerateDMatrix();
if (is_col_split) {
p_fmat = std::shared_ptr<DMatrix>{
p_fmat->SliceCol(collective::GetWorldSize(), collective::GetRank())};
}
auto const &gmat =
*(p_fmat->GetBatches<GHistIndexMatrix>(ctx, BatchParam{kMaxBins, 0.5}).begin());
uint32_t total_bins = gmat.cut.Ptrs().back();
static double constexpr kEps = 1e-6;
std::vector<GradientPair> gpair = {
{0.23f, 0.24f}, {0.24f, 0.25f}, {0.26f, 0.27f}, {0.27f, 0.28f},
{0.27f, 0.29f}, {0.37f, 0.39f}, {0.47f, 0.49f}, {0.57f, 0.59f}};
bst_node_t nid = 0;
HistogramBuilder histogram;
HistMakerTrainParam hist_param;
histogram.Reset(ctx, total_bins, {kMaxBins, 0.5}, is_distributed, is_col_split, &hist_param);
RegTree tree;
common::RowSetCollection row_set_collection;
row_set_collection.Clear();
std::vector<bst_idx_t> &row_indices = *row_set_collection.Data();
row_indices.resize(kNRows);
std::iota(row_indices.begin(), row_indices.end(), 0);
row_set_collection.Init();
CPUExpandEntry node{RegTree::kRoot, tree.GetDepth(0)};
std::vector<bst_node_t> nodes_to_build{node.nid};
std::vector<bst_node_t> dummy_sub;
histogram.AddHistRows(&tree, &nodes_to_build, &dummy_sub, false);
common::BlockedSpace2d space{
1, [&](std::size_t nidx_in_set) { return row_set_collection[nidx_in_set].Size(); }, 256};
for (auto const &gidx : p_fmat->GetBatches<GHistIndexMatrix>(ctx, {kMaxBins, 0.5})) {
histogram.BuildHist(0, space, gidx, row_set_collection, nodes_to_build,
linalg::MakeTensorView(ctx, gpair, gpair.size()), force_read_by_column);
}
histogram.SyncHistogram(ctx, &tree, nodes_to_build, {});
// Check if number of histogram bins is correct
ASSERT_EQ(histogram.Histogram()[nid].size(), gmat.cut.Ptrs().back());
std::vector<GradientPairPrecise> histogram_expected(histogram.Histogram()[nid].size());
// Compute the correct histogram (histogram_expected)
CHECK_EQ(gpair.size(), kNRows);
for (size_t rid = 0; rid < kNRows; ++rid) {
const size_t ibegin = gmat.row_ptr[rid];
const size_t iend = gmat.row_ptr[rid + 1];
for (size_t i = ibegin; i < iend; ++i) {
const size_t bin_id = gmat.index[i];
histogram_expected[bin_id] += GradientPairPrecise(gpair[rid]);
}
}
// Now validate the computed histogram returned by BuildHist
for (size_t i = 0; i < histogram.Histogram()[nid].size(); ++i) {
GradientPairPrecise sol = histogram_expected[i];
ASSERT_NEAR(sol.GetGrad(), histogram.Histogram()[nid][i].GetGrad(), kEps);
ASSERT_NEAR(sol.GetHess(), histogram.Histogram()[nid][i].GetHess(), kEps);
}
}
TEST(CPUHistogram, BuildHist) {
Context ctx;
TestBuildHistogram(&ctx, true, false, false);
TestBuildHistogram(&ctx, false, false, false);
TestBuildHistogram(&ctx, true, true, false);
TestBuildHistogram(&ctx, false, true, false);
}
TEST(CPUHistogram, BuildHistColumnSplit) {
auto constexpr kWorkers = 4;
Context ctx;
std::int32_t n_total_threads = std::thread::hardware_concurrency();
auto n_threads = std::max(n_total_threads / kWorkers, 1);
ctx.UpdateAllowUnknown(Args{{"nthread", std::to_string(n_threads)}});
collective::TestDistributedGlobal(kWorkers, [&] { TestBuildHistogram(&ctx, true, true, true); });
collective::TestDistributedGlobal(kWorkers, [&] { TestBuildHistogram(&ctx, true, false, true); });
}
namespace {
template <typename GradientSumT>
void ValidateCategoricalHistogram(size_t n_categories,
common::Span<GradientSumT> onehot,
common::Span<GradientSumT> cat) {
auto cat_sum = std::accumulate(cat.cbegin(), cat.cend(), GradientPairPrecise{});
for (size_t c = 0; c < n_categories; ++c) {
auto zero = onehot[c * 2];
auto one = onehot[c * 2 + 1];
auto chosen = cat[c];
auto not_chosen = cat_sum - chosen;
ASSERT_LE(RelError(zero.GetGrad(), not_chosen.GetGrad()), kRtEps);
ASSERT_LE(RelError(zero.GetHess(), not_chosen.GetHess()), kRtEps);
ASSERT_LE(RelError(one.GetGrad(), chosen.GetGrad()), kRtEps);
ASSERT_LE(RelError(one.GetHess(), chosen.GetHess()), kRtEps);
}
}
void TestHistogramCategorical(size_t n_categories, bool force_read_by_column) {
size_t constexpr kRows = 340;
bst_bin_t constexpr kBins = 256;
auto x = GenerateRandomCategoricalSingleColumn(kRows, n_categories);
auto cat_m = GetDMatrixFromData(x, kRows, 1);
cat_m->Info().feature_types.HostVector().push_back(FeatureType::kCategorical);
Context ctx;
BatchParam batch_param{0, kBins};
RegTree tree;
CPUExpandEntry node{RegTree::kRoot, tree.GetDepth(RegTree::kRoot)};
std::vector<bst_node_t> nodes_to_build;
nodes_to_build.push_back(node.nid);
auto gpair = GenerateRandomGradients(kRows, 0, 2);
common::RowSetCollection row_set_collection;
row_set_collection.Clear();
std::vector<bst_idx_t> &row_indices = *row_set_collection.Data();
row_indices.resize(kRows);
std::iota(row_indices.begin(), row_indices.end(), 0);
row_set_collection.Init();
HistMakerTrainParam hist_param;
std::vector<bst_node_t> dummy_sub;
common::BlockedSpace2d space{
1, [&](std::size_t nidx_in_set) { return row_set_collection[nidx_in_set].Size(); }, 256};
/**
* Generate hist with cat data.
*/
HistogramBuilder cat_hist;
for (auto const &gidx : cat_m->GetBatches<GHistIndexMatrix>(&ctx, {kBins, 0.5})) {
auto total_bins = gidx.cut.TotalBins();
cat_hist.Reset(&ctx, total_bins, {kBins, 0.5}, false, false, &hist_param);
cat_hist.AddHistRows(&tree, &nodes_to_build, &dummy_sub, false);
cat_hist.BuildHist(0, space, gidx, row_set_collection, nodes_to_build,
linalg::MakeTensorView(&ctx, gpair.ConstHostSpan(), gpair.Size()),
force_read_by_column);
}
cat_hist.SyncHistogram(&ctx, &tree, nodes_to_build, {});
/**
* Generate hist with one hot encoded data.
*/
auto x_encoded = OneHotEncodeFeature(x, n_categories);
auto encode_m = GetDMatrixFromData(x_encoded, kRows, n_categories);
HistogramBuilder onehot_hist;
for (auto const &gidx : encode_m->GetBatches<GHistIndexMatrix>(&ctx, {kBins, 0.5})) {
auto total_bins = gidx.cut.TotalBins();
onehot_hist.Reset(&ctx, total_bins, {kBins, 0.5}, false, false, &hist_param);
onehot_hist.AddHistRows(&tree, &nodes_to_build, &dummy_sub, false);
onehot_hist.BuildHist(0, space, gidx, row_set_collection, nodes_to_build,
linalg::MakeTensorView(&ctx, gpair.ConstHostSpan(), gpair.Size()),
force_read_by_column);
}
onehot_hist.SyncHistogram(&ctx, &tree, nodes_to_build, {});
auto cat = cat_hist.Histogram()[0];
auto onehot = onehot_hist.Histogram()[0];
ValidateCategoricalHistogram(n_categories, onehot, cat);
}
} // anonymous namespace
TEST(CPUHistogram, Categorical) {
for (size_t n_categories = 2; n_categories < 8; ++n_categories) {
TestHistogramCategorical(n_categories, false);
}
for (size_t n_categories = 2; n_categories < 8; ++n_categories) {
TestHistogramCategorical(n_categories, true);
}
}
namespace {
void TestHistogramExternalMemory(Context const *ctx, BatchParam batch_param, bool is_approx,
bool force_read_by_column) {
size_t constexpr kEntries = 1 << 16;
auto m =
RandomDataGenerator{kEntries / 8, 8, 0.0f}.Batches(4).GenerateSparsePageDMatrix("temp", true);
std::vector<float> hess(m->Info().num_row_, 1.0);
if (is_approx) {
batch_param.hess = hess;
}
std::vector<bst_idx_t> partition_size(1, 0);
bst_bin_t total_bins{0};
bst_idx_t n_samples{0};
auto gpair = GenerateRandomGradients(m->Info().num_row_, 0.0, 1.0);
auto const &h_gpair = gpair.HostVector();
RegTree tree;
std::vector<bst_node_t> nodes{RegTree::kRoot};
common::BlockedSpace2d space{
1, [&](std::size_t nidx_in_set) { return partition_size.at(nidx_in_set); }, 256};
common::GHistRow multi_page;
HistogramBuilder multi_build;
HistMakerTrainParam hist_param;
std::vector<bst_node_t> dummy_sub;
{
/**
* Multi page
*/
std::vector<common::RowSetCollection> rows_set;
for (auto const &page : m->GetBatches<GHistIndexMatrix>(ctx, batch_param)) {
CHECK_LT(page.base_rowid, m->Info().num_row_);
auto n_rows_in_node = page.Size();
partition_size[0] = std::max(partition_size[0], n_rows_in_node);
total_bins = page.cut.TotalBins();
n_samples += n_rows_in_node;
rows_set.emplace_back();
InitRowPartitionForTest(&rows_set.back(), n_rows_in_node, page.base_rowid);
}
ASSERT_EQ(n_samples, m->Info().num_row_);
multi_build.Reset(ctx, total_bins, batch_param, false, false, &hist_param);
multi_build.AddHistRows(&tree, &nodes, &dummy_sub, false);
std::size_t page_idx{0};
for (auto const &page : m->GetBatches<GHistIndexMatrix>(ctx, batch_param)) {
multi_build.BuildHist(page_idx, space, page, rows_set[page_idx], nodes,
linalg::MakeTensorView(ctx, h_gpair, h_gpair.size()),
force_read_by_column);
++page_idx;
}
multi_build.SyncHistogram(ctx, &tree, nodes, {});
multi_page = multi_build.Histogram()[RegTree::kRoot];
}
HistogramBuilder single_build;
common::GHistRow single_page;
{
/**
* Single page
*/
common::RowSetCollection row_set_collection;
InitRowPartitionForTest(&row_set_collection, n_samples);
single_build.Reset(ctx, total_bins, batch_param, false, false, &hist_param);
SparsePage concat;
std::vector<float> hess(m->Info().num_row_, 1.0f);
for (auto const &page : m->GetBatches<SparsePage>()) {
concat.Push(page);
}
auto cut = common::SketchOnDMatrix(ctx, m.get(), batch_param.max_bin, false, hess);
GHistIndexMatrix gmat(concat, {}, cut, batch_param.max_bin, false,
std::numeric_limits<double>::quiet_NaN(), ctx->Threads());
single_build.AddHistRows(&tree, &nodes, &dummy_sub, false);
single_build.BuildHist(0, space, gmat, row_set_collection, nodes,
linalg::MakeTensorView(ctx, h_gpair, h_gpair.size()),
force_read_by_column);
single_build.SyncHistogram(ctx, &tree, nodes, {});
single_page = single_build.Histogram()[RegTree::kRoot];
}
for (size_t i = 0; i < single_page.size(); ++i) {
ASSERT_NEAR(single_page[i].GetGrad(), multi_page[i].GetGrad(), kRtEps);
ASSERT_NEAR(single_page[i].GetHess(), multi_page[i].GetHess(), kRtEps);
}
}
} // anonymous namespace
TEST(CPUHistogram, ExternalMemory) {
int32_t constexpr kBins = 256;
Context ctx;
TestHistogramExternalMemory(&ctx, BatchParam{kBins, common::Span<float>{}, false}, true, false);
TestHistogramExternalMemory(&ctx, BatchParam{kBins, common::Span<float>{}, false}, true, true);
float sparse_thresh{0.5};
TestHistogramExternalMemory(&ctx, {kBins, sparse_thresh}, false, false);
TestHistogramExternalMemory(&ctx, {kBins, sparse_thresh}, false, true);
sparse_thresh = std::numeric_limits<float>::quiet_NaN();
TestHistogramExternalMemory(&ctx, {kBins, sparse_thresh}, false, false);
TestHistogramExternalMemory(&ctx, {kBins, sparse_thresh}, false, true);
}
namespace {
class OverflowTest : public ::testing::TestWithParam<std::tuple<bool, bool>> {
public:
std::vector<GradientPairPrecise> TestOverflow(bool limit, bool is_distributed,
bool is_col_split) {
bst_bin_t constexpr kBins = 256;
Context ctx;
HistMakerTrainParam hist_param;
if (limit) {
hist_param.Init(Args{{"max_cached_hist_node", "1"}});
}
std::shared_ptr<DMatrix> Xy =
is_col_split ? RandomDataGenerator{8192, 16, 0.5}.GenerateDMatrix(true)
: RandomDataGenerator{8192, 16, 0.5}.Bins(kBins).GenerateQuantileDMatrix(true);
if (is_col_split) {
Xy =
std::shared_ptr<DMatrix>{Xy->SliceCol(collective::GetWorldSize(), collective::GetRank())};
}
double sparse_thresh{TrainParam::DftSparseThreshold()};
auto batch = BatchParam{kBins, sparse_thresh};
bst_bin_t n_total_bins{0};
float split_cond{0};
for (auto const &page : Xy->GetBatches<GHistIndexMatrix>(&ctx, batch)) {
n_total_bins = page.cut.TotalBins();
// use a cut point in the second column for split
split_cond = page.cut.Values()[kBins + kBins / 2];
}
RegTree tree;
MultiHistogramBuilder hist_builder;
CHECK_EQ(Xy->Info().IsColumnSplit(), is_col_split);
hist_builder.Reset(&ctx, n_total_bins, tree.NumTargets(), batch, is_distributed,
Xy->Info().IsColumnSplit(), &hist_param);
std::vector<CommonRowPartitioner> partitioners;
partitioners.emplace_back(&ctx, Xy->Info().num_row_, /*base_rowid=*/0,
Xy->Info().IsColumnSplit());
auto gpair = GenerateRandomGradients(Xy->Info().num_row_, 0.0, 1.0);
CPUExpandEntry best;
hist_builder.BuildRootHist(Xy.get(), &tree, partitioners,
linalg::MakeTensorView(&ctx, gpair.ConstHostSpan(), gpair.Size(), 1),
best, batch);
best.split.Update(1.0f, 1, split_cond, false, false, GradStats{1.0, 1.0}, GradStats{1.0, 1.0});
tree.ExpandNode(best.nid, best.split.SplitIndex(), best.split.split_value, false,
/*base_weight=*/2.0f,
/*left_leaf_weight=*/1.0f, /*right_leaf_weight=*/1.0f, best.GetLossChange(),
/*sum_hess=*/2.0f, best.split.left_sum.GetHess(),
best.split.right_sum.GetHess());
std::vector<CPUExpandEntry> valid_candidates{best};
for (auto const &page : Xy->GetBatches<GHistIndexMatrix>(&ctx, batch)) {
partitioners.front().UpdatePosition(&ctx, page, valid_candidates, &tree);
}
CHECK_NE(partitioners.front()[tree.LeftChild(best.nid)].Size(), 0);
CHECK_NE(partitioners.front()[tree.RightChild(best.nid)].Size(), 0);
hist_builder.BuildHistLeftRight(
&ctx, Xy.get(), &tree, partitioners, valid_candidates,
linalg::MakeTensorView(&ctx, gpair.ConstHostSpan(), gpair.Size(), 1), batch);
if (limit) {
CHECK(!hist_builder.Histogram(0).HistogramExists(best.nid));
} else {
CHECK(hist_builder.Histogram(0).HistogramExists(best.nid));
}
std::vector<GradientPairPrecise> result;
auto hist = hist_builder.Histogram(0)[tree.LeftChild(best.nid)];
std::copy(hist.cbegin(), hist.cend(), std::back_inserter(result));
hist = hist_builder.Histogram(0)[tree.RightChild(best.nid)];
std::copy(hist.cbegin(), hist.cend(), std::back_inserter(result));
return result;
}
void RunTest() {
auto param = GetParam();
auto res0 = this->TestOverflow(false, std::get<0>(param), std::get<1>(param));
auto res1 = this->TestOverflow(true, std::get<0>(param), std::get<1>(param));
ASSERT_EQ(res0, res1);
}
};
auto MakeParamsForTest() {
std::vector<std::tuple<bool, bool>> configs;
for (auto i : {true, false}) {
for (auto j : {true, false}) {
configs.emplace_back(i, j);
}
}
return configs;
}
} // anonymous namespace
TEST_P(OverflowTest, Overflow) { this->RunTest(); }
INSTANTIATE_TEST_SUITE_P(CPUHistogram, OverflowTest, ::testing::ValuesIn(MakeParamsForTest()));
} // namespace xgboost::tree
|